高中数学高考解密16 导数的综合应用 (讲义)-【高频考点解密】2021年新高考数学二轮复习讲义+分层训练
展开
这是一份高中数学高考解密16 导数的综合应用 (讲义)-【高频考点解密】2021年新高考数学二轮复习讲义+分层训练,共17页。
核心考点一 利用导数研究函数的零点
1.利用导数研究函数的零点
函数的零点、方程的实根、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解.
2.三次函数的零点分布
三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x10(x∈I).
②∃x∈I,使f(x)>g(x)成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).
③对∀x1,x2∈I使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.
④对∀x1∈I,∃x2∈I使得f(x1)≥g(x2)⇔f(x)min≥g(x)min.
2.(1)判断含x,ln x,ex的混合式的函数值的符号时,需利用x0=eln x0及ex≥x+1,ln x≤x-1对函数式放缩,有时可放缩为一个常量,变形为关于x的一次式或二次式,再判断符号.
(2)会对复杂函数式或导数式(如含x,ln x,ex的混合式)变形,如拆分为两个函数处理,好处是避免由于式子的复杂导致的思路无法开展.
1.已知函数f(x)=x2+4x+2,g(x)=2ex(x+1).若x≥-2时,f(x)≤kg(x),求k的取值范围.
【解析】设函数F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4
=2(x+2)(kex-1).
由题设可得F(0)≥0,即k≥1.
令F′(x)=0,得x1=-ln k,x2=-2.
(ⅰ)若1≤k0,
即F(x)在(-2,+∞)上单调递增.
而F(-2)=0,故当x≥-2时,F(x)≥0,
即F(x)≤kg(x)恒成立.
(ⅲ)若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)
相关试卷
这是一份高中数学高考解密16 导数的综合应用(分层训练)-【高频考点解密】2021年新高考数学二轮复习讲义+分层训练(解析版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考解密16 导数的综合应用(分层训练)-【高频考点解密】2021年新高考数学二轮复习讲义+分层训练(原卷版),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考解密13 函数图像及性质(讲义)-【高频考点解密】2021年新高考数学二轮复习讲义+分层训练,共10页。

