


- 9讲 实际问题与二元一次方程组 教案 1 次下载
- 11讲 一元一次不等式 教案 教案 0 次下载
- 12讲 一元一次不等式组 教案 教案 0 次下载
- 13讲 实际问题与一元一次不等式 教案 4 次下载
- 15讲 直方图 教案 教案 0 次下载
人教版七年级下册第十章 数据的收集、整理与描述10.1 统计调查教案设计
展开考点1 统计相关概念
总体:调查时,调查对象的全体叫做总体.
个体:组成总体的每一个调查对象叫做个体.
样本:从总体中取出的一部分个体叫做总体的一个样本.
样本容量:样本中个体的数量叫做样本容量(不带单位).
要点诠释:
(1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.
(2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.
(3) 样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.
考点2 调查的方法:全面调查和抽样调查
(1)全面调查:考察全体对象的调查叫做全面调查.
要点诠释:
1、全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.
2、一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.
(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.
要点诠释:
(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.
(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.
(3)调查方法的选择:
①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.
②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.
考点3 数据的描述
描述数据的方法有两种:统计表和统计图.
统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据
统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.
要点诠释:
(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.
(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.
(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.
二、课堂精讲:
(一)统计学及其相关概念
例1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).
A.0种 B.1种 C.2种 D.3种
【随堂演练一】【A类】
为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中( ).
A.2万考生是总体; B.每名考生是个体;
C.个体是每名考生的成绩; D.600名考生是总体的一个样本.
(二)普查和抽样调查
例2.下列调查中,最适合用普查方式的是( )
A.调查一批电视机的使用寿命情况
B.调查某中学九年级一班学生的视力情况
C.调查重庆市初中学生每天锻炼所用的时间情况
D.调查重庆市初中学生利用网络媒体自主学习的情况
例3.下列调查适合作抽样调查的是( ).
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
【随堂演练二】【A类】
下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?
(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.
(三)数据的描述
例4.2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:
(1)将统计图补充完整;
(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.
例5.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):
请根据以上信息解答下列问题
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)
例6.某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是( )
A.30吨 B.31吨 C.32吨 D.33吨
【随堂演练三】【A类】
1、某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集的数据,绘制成如图.
(1)学校采用的调查方式是___________________________________________________.
(2)选择喜欢“踢毽子”的学生有多少人,并在图中将“踢毽子”部分的图形补充完整.
(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.
2、近年来国内生产总值增长率变化情况如图, 从图上看下列结论不正确的是( ).
A.1995~1999年国内生产总值增长率逐年减少
B.2000年国内生产总值的年增长率开始回升
C.这7年中, 每年的国内生产总值不断增长
D.这7年中, 每年的国内生产总值有增有减
(四)综合应用
例7. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,让若干名学生从足球、乒乓球、篮球、排球四种球类运动中选择自己最喜欢的一种,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类运动;图中用乒乓球、足球、排球、篮球代表喜欢该项目的学生人数).
图1 图2
请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)喜欢排球的人数在扇形统计图中所占的扇形圆心角是多少度?
(3)补全折线统计图.
例8.为响应国家要求中小学每人锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了图1和图2,问:
(1)该班共有多少名学生?若全年级共有600名学生,估计全年级参加乒乓球活动的学生有多少名?
(2)请在图1中将“乒乓球”部分的图形补充完整,并求出扇形统计图中,表示“足球”的扇形圆心角的度数.
【随堂演练四】【A类】
1、如果想表示我国从20002010年间国民生产总值的变化情况, 最合适的是采用( ).
A. 条形统计图 B. 扇形统计图 C.折线统计图 D.以上都很合适
2、某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )
A.240 B.120 C.80 D.40
3、为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,按照老年人、成年人、青少年各年龄段实际人口3∶5∶2的比例,随机抽取一定数量的观众进行调查,得到如下统计图:
(1)上面所用的调查方法是______(填“全面调查”或“抽样调查”);
(2)写出折线统计图中A、B所代表的值;
A:_________ B:__________
(3)求该地区喜爱娱乐节目的成年人的人数.
三.小结:
1.统计相关概念
总体:调查时,调查对象的全体叫做总体.
个体:组成总体的每一个调查对象叫做个体.
样本:从总体中取出的一部分个体叫做总体的一个样本.
样本容量:样本中个体的数量叫做样本容量(不带单位).
2.调查的方法:全面调查和抽样调查
3.数据的描述
描述数据的方法有两种:统计表和统计图.
统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据
统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.
(1)条形统计图:条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.
(2)扇形统计图:扇形统计图可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.
(3)折线统计图:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.
四、课后巩固练习
【A类】
一、选择题
1.数据处理过程中,以下顺序正确的是( ) .
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
2.为了了解某市七年级2000名学生的身高,从中抽取500名学生进行测量.对这个问题,下列说法正确的是( ) .
A.2000名学生是总体
B.每个学生是个体
C.抽取的500名学生是所抽的一个样本
D.每个学生的身高是个体
3.在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是( )
A.调查的方式是普查 B.该街道约有18%的成年人吸烟
C.该街道只有820个成年人不吸烟 D.样本是180个吸烟的成年人
4.下列调查中适合作抽样调查的有( ) .
①了解一批炮弹的命中精度 ②查全国中学生的上网情况
③审查某文章中的错别字 ④考查某种农作物的长势
A.1 B.2个 C.3个 D.4个
5.若扇形统计图中有4组数据,其中前三组数据相应的圆心角度数分别为72°、108°、144°,则这四组数据的比为( ) .
A.2:3:4:1 B.2:3:4:3 C.2:3:4:5 D.第四组数据不确定
6. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 ( ) .
A.9.5万件 B.9万件 C.9500件 D.5000件
7.如图所示是某造纸厂2009年中各季度的产量统计图,下列表述中不正确的是( ) .
A.二季度的产量最低 B.从二季度到四季度产量在增长
C.三季度产量增幅最大 D.四季度产量增幅最大
8.(重庆)某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( ) .
A.3项 B.4项 C.5项 D.6项
【B类】
二、填空题
9.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.
①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.
则正确的排序为 .(填序号)
10.某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:
(1)参加这次演讲比赛的同学共有________人;
(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.
11.检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.
12.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校1200名学生中,随机抽查了80名学生,结果显示有2名学生“不知道”,由此估计该校全体学生中对“限塑令”约有________名学生“不知道”.
13.某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.
14.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到如下图所示的条形图,观察(如图),可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.
【C类】
15.小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.
(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.
(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.
(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.
16. 为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:
(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;
(2)不参加锻炼的老年人中,男性大约是女性的几倍?
(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?
(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.
17. 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为 度;
(2)图2、3中的a= ,b= ;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
课程目标
1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;
2.了解总体、样本、样本容量等相关概念;
3. 会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.
课程重点
调查搜集数据的步骤、方法、与用划计数法整理数据,用统计图描述数据.
课程难点
扇形统计图、条形统计图和折线统计图的制作与应用.
教学方法建议
通过研究解决问题的过程,让学生积极参与调查活动,从中感受数据的作用
及统计在实际生活中的应用,增强学习统计的兴趣
每亩生产成本
每亩产量
油菜籽市场价格
种植面积
110元
130千克
3元/千克
500000亩
初中数学人教版七年级下册10.1 统计调查教案设计: 这是一份初中数学人教版七年级下册10.1 统计调查教案设计,共4页。
人教版七年级下册10.1 统计调查教学设计及反思: 这是一份人教版七年级下册10.1 统计调查教学设计及反思,共7页。教案主要包含了知识梳理,经典例题,题型一、数据统计方式,当堂检测,课后练习等内容,欢迎下载使用。
初中数学人教版七年级下册10.1 统计调查教案: 这是一份初中数学人教版七年级下册10.1 统计调查教案,共5页。教案主要包含了课标要求,教学重难点,教学过程,情景导入,初步认识,思考探究,获取新知,运用新知,深化理解,师生互动,课堂小结,课后作业等内容,欢迎下载使用。