


所属成套资源:2023年中考数学复习专项专练专题
2023年中考数学复习专项专练专题15 图形的旋转、翻折(对称)与平移及答案(四川版)
展开
这是一份2023年中考数学复习专项专练专题15 图形的旋转、翻折(对称)与平移及答案(四川版),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题15 图形的旋转、翻折(对称)与平移 一、单选题1.(2020·四川自贡)在平面直角坐标系中,将点向下平移3个单位长度,所得点的坐标是( )A. B. C. D.【答案】D【解析】【分析】根据点的平移规律为上加下减,左减右加即可求解.【详解】解:点的平移规律为上加下减,左减右加,可得横坐标不变,纵坐标减3,1-3=-2,故答案为D.【点睛】本题考查点的坐标平移规律,根据“上加下减,左减右加”即可求解.2.(2021·四川雅安)如图,将沿边向右平移得到,交于点G.若..则的值为( )A.2 B.4 C.6 D.8【答案】B【解析】【分析】根据平移的性质可得AD=BE,且AD∥BE,故可得△CEG∽△ADG,由相似三角形的性质及已知条件即可求得△CEG的面积.【详解】由平移的性质可得:AD=BE,且AD∥BE∴△CEG∽△ADG∴ 即∵∴∴∵∴ 故选:B.【点睛】本题考查了平移的性质及相似三角形的判定与性质,相似三角形的性质是本题的关键.3.(2022·四川南充)如图,将直角三角板绕顶点A顺时针旋转到,点恰好落在的延长线上,,则为( )A. B. C. D.【答案】B【解析】【分析】根据直角三角形两锐角互余,求出的度数,由旋转可知,在根据平角的定义求出的度数即可.【详解】∵,∴,∵由旋转可知,∴,故答案选:B.【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.4.(2022·四川内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【答案】D【解析】【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.5.(2021·四川广安)如图,将绕点逆时针旋转得到,若且于点,则的度数为( )A. B. C. D.【答案】C【解析】【分析】由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.【详解】解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.【点睛】本题考查了旋转的性质,掌握旋转的性质是本题的关键.6.(2020·四川攀枝花)如图,直径的半圆,绕点顺时针旋转,此时点到了点,则图中阴影部分的面积是( ).A. B. C. D.【答案】D【解析】【分析】由半圆A′B面积+扇形ABA′的面积-空白处半圆AB的面积即可得出阴影部分的面积.【详解】解:∵半圆AB,绕B点顺时针旋转30°,∴S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′==3π故选D.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.二、填空题7.(2021·四川巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=__________.【答案】【解析】【分析】连接OQ,OP,利用HL证明Rt△OAQ≌Rt△ODQ,得QA=DQ,同理可证:CP=DP,设CP=x,则BP=3-x,PQ=x+,在Rt△BPQ中,利用勾股定理列出方程求出x=,再利用△AQM∽△BQP可求解.【详解】解:连接OQ,OP,∵将正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,∴OA=OD,∠OAQ=∠ODQ=90°,在Rt△OAQ和Rt△ODQ中,,∴Rt△OAQ≌Rt△ODQ(HL),∴QA=DQ,同理可证:CP=DP,∵BQ:AQ=3:1,AB=3,∴BQ=,AQ=,设CP=x,则BP=3-x,PQ=x+,在Rt△BPQ中,由勾股定理得:(3-x)2+()2=(x+)2,解得x=,∴BP=,∵∠AQM=∠BQP,∠BAM=∠B,∴△AQM∽△BQP,∴,∴,∴AM=.故答案为:.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA=DQ,CP=DP是解题的关键.8.(2020·四川眉山)如图,在中,,.将绕点按顺时针方向旋转至的位置,点恰好落在边的中点处,则的长为________.【答案】【解析】【分析】根据题意,判断出ABC斜边BC的长度,根据勾股定理算出AC的长度,且,所以为等边三角形,可得旋转角为60°,同理,,故也是等边三角形,的长度即为AC的长度.【详解】解:在ABC中,∠BAC=90°,AB=2,将其进行顺时针旋转,落在BC的中点处,∵是由ABC旋转得到,∴,而,根据勾股定理:,又∵,且,∴为等边三角形,∴旋转角,∴,且,故也是等边三角形,∴,故答案为:.【点睛】本题主要考查了旋转性质的应用以及勾股定理的计算,解题的关键在于通过题中所给的条件,判断出图形旋转的度数,知道图形旋转的角度后,有关线段的长度也可求得.三、解答题9.(2020·四川巴中)如图所示,在边长为1cm的小正方形组成的网格中.(1)将沿y轴正方向向上平移5个单位长度后,得到,请作出,并求出的长度;(2)再将绕坐标原点O顺时针旋转180°,得到,请作出,并直接写出点的坐标;(3)在(1)(2)的条件下,求线段AB在变换过程中扫过图形的面积和.【答案】(1)见解析,;(2)见解析,B2(4,﹣4);(3)【解析】【分析】(1)分别将点A、B、C向上平移5个单位得到对应点,再顺次连接可得;(2)分别将点A、B、C绕点O顺时针旋转180°得到对应点,再顺次连接可得;(3)平行四边形的面积加上大半圆的面积与小半圆面积的差即可求得.【详解】解:(1)如图所示,即为所求,;(2)如图,△A2B2C2即为所求,B2(4,﹣4);(3)在(1)(2)的条件下,线段AB在变换过程中扫过图形的面积和为:【点睛】本题考查了作图-平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义和性质.10.(2021·四川阿坝)如图,中,,将绕点C顺时针旋转得到,点D落在线段AB上,连接BE.(1)求证:DC平分;(2)试判断BE与AB的位置关系,并说明理由:(3)若,求的值.【答案】(1)见解析;(2)BE⊥AB,理由见解析;(3).【解析】【分析】(1)根据旋转的性质可得AC=CD,∠A=∠CDE,再由等腰三角形的性质得到∠A=∠ADC即可证明∠ADC=∠CDE;(2)根据旋转的性质得到∠ACD=∠BCE,CB=CE,AC=CD,从而得出∠CAD=∠ADC=∠CBE=∠CEB,再根据∠ACB=90°即可得到∠ABE=90°;(3)设BD=BE=a,根据勾股定理计算出AB=DE=,表达出AD,再证明△ACD∽△BCE,得到即可.【详解】解:(1)由旋转可知:AC=CD,∠A=∠CDE,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE;(2)BE⊥AB,理由:由旋转可知,∠ACD=∠BCE,CB=CE,AC=CD,∴∠CAD=∠ADC=∠CBE=∠CEB,又∵∠ACB=90°,∴∠CAD+∠ABC=90°,∴∠CBE+∠ABC=90°,即∠ABE=90°,∴BE⊥AB;(3)∵∠ABE=90°,BD=BE,∴设BD=BE=a,则,又∵AB=DE,∴AB=,则AD=,由(2)可知,∠ACD=∠BCE,∠CAD=∠ADC=∠CBE=∠CEB,∴△ACD∽△BCE,∴,∴tan∠ABC=.【点睛】本题考查了旋转的综合应用以及相似三角形的性质与判定、锐角三角函数的定义,解题的关键是熟练掌握旋转的性质,并熟记锐角三角函数的定义.
相关试卷
这是一份三年(2020年-2022年)中考数学真题分项汇编:专题15 图形的旋转、翻折(对称)与平移(含答案详解),共83页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学专项复习测试卷——图形的旋转、翻折(对称)与平移,共8页。
这是一份2023中考专题复习:图形的旋转、翻折(对称)与平移,共10页。试卷主要包含了四盏灯笼的位置如图等内容,欢迎下载使用。