终身会员
搜索
    上传资料 赚现金
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【中考一轮复习】2023年中考数学人教版单元检测卷——专题26 反比例函数(原卷版) .doc
    • 解析
      【中考一轮复习】2023年中考数学人教版单元检测卷——专题26 反比例函数(解析版) .doc
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)01
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)02
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)03
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)01
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)02
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)

    展开
    这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题26反比例函数解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题26反比例函数原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    (试卷满分120分,答题时间120分钟)
    一、选择题(共10小题,每题3分,共30分)
    1. (2022广西贺州)已知一次函数的图象如图所示,则与的图象为( )
    A. B. C. D.
    【答案】A
    【解析】根据题意可得,从而得到一次函数的图象经过第一、二、四象限,反比函数的图象位于第一、三象限内,即可求解.
    根据题意得:,
    ∴,
    ∴一次函数的图象经过第一、二、四象限,反比函数的图象位于第一、三象限内.
    故选:A
    【点睛】本题主要考查了一次函数和反比例函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质是解题的关键.
    2. (2022山东日照)如图,矩形OABC与反比例函数(k1是非零常数,x>0)的图象交于点M,N,与反比例函数(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1-k2=( )
    A. 3B. -3C. D.
    【答案】B
    【解析】根据矩形的性质以及反比例函数系数k的几何意义即可得出结论.
    ∵点M、N均是反比例函数(k1是非零常数,x>0)的图象上,
    ∴,
    ∵矩形OABC的顶点B在反比例函数(k2是非零常数,x>0)的图象上,
    ∴S矩形OABC=k2,
    ∴S四边形OMBN=S矩形OABC-S△OAM-S△OCN=3,
    ∴k2-k1=3,
    ∴k1-k2=-3,
    故选:B.
    【点睛】本题考查了矩形的性质,反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    3. (2022广东)点,,,在反比例函数图象上,则,,,中最小的是( )
    A. B. C. D.
    【答案】D
    【解析】根据反比例函数的性质可直接进行求解.
    由反比例函数解析式可知:,
    ∴在每个象限内,y随x的增大而减小,
    ∵点,,,在反比例函数图象上,
    ∴,
    故选D.
    【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.
    4.(2022海南)若反比例函数的图象经过点,则它的图象也一定经过的点
    是( )
    A. B. C. D.
    【答案】C
    【解析】【分析】先利用反比例函数的图象经过点,求出k的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.
    ∵反比例函数的图象经过点,
    ∴k=2×(﹣3)=﹣6,
    ∵(﹣2)×(﹣3)=6≠﹣6,
    (﹣3)×(﹣2)=6≠﹣6,
    1×(﹣6)=﹣6,
    ,6×1=6≠﹣6,
    则它一定还经过(1,﹣6),
    故选:C.
    【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.熟练掌握反比例函数的性质是解题的关键.
    5. (2022长春)如图,在平面直角坐标系中,点P在反比例函数(,)的图象上,其纵坐标为2,过点P作//轴,交x轴于点Q,将线段绕点Q顺时针旋转60°得到线段.若点M也在该反比例函数的图象上,则k的值为( )
    A. B. C. D. 4
    【答案】C
    【解析】作MN⊥x轴交于点N,分别表示出ON、MN,利用k值的几何意义列式即可求出结果.
    作MN⊥x轴交于点N,如图所示,
    ∵P点纵坐标为:2,
    ∴P点坐标表示为:(,2),PQ=2,
    由旋转可知:QM=PQ=2,∠PQM=60°,
    ∴∠MQN=30°,
    ∴MN=,QN=,
    ∴,
    即:,
    解得:k=,
    故选:C.
    【点睛】本题主要考查的是k的几何意义,表示出对应线段是解题的关键.
    6. (2022湖南邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是( )
    A. 1B. C. 2D.
    【答案】B
    【解析】由反比例函数的几何意义可知,k=1,也就是△AOB的面积的2倍是1,求出△AOB的面积是.
    设A(x,y)则OB=x,AB=y,
    ∵A为反比例函数y=图象上一点,
    ∴xy=1,
    ∴S△ABO=AB•OB=xy=×1=,
    【点睛】考查反比例函数的几何意义,即k的绝对值,等于△AOB的面积的2倍,数形结合比较直观.
    7. (2022湖南怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图像于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为( )
    A. 8B. 9C. 10D. 11
    【答案】D
    【解析】设,由S△BCD=即可求解.
    设,
    ∵BD⊥y轴
    ∴S△BCD==5,
    解得:
    【点睛】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.
    8. (2022湖北宜昌)已知经过闭合电路的电流(单位:)与电路的电阻(单位:)是反比例函数关系.根据下表判断和的大小关系为( )
    A. B. C. D.
    【答案】A
    【解析】根据电流与电路的电阻是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x和y的变化规律是单调的,即可判断
    ∵电流与电路的电阻是反比例函数关系
    由表格:;
    ∴在第一象限内,I随R的增大而减小


    【点睛】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减.
    9. (2022山东潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )
    A.海拔越高,大气压越大
    B. 图中曲线是反比例函数的图象
    C. 海拔为4千米时,大气压约为70千帕
    D. 图中曲线表达了大气压和海拔两个量之间的变化关系
    【答案】D
    【解析】根据图象中的数据回答即可.
    A.海拔越高,大气压越小,该选项不符合题意;
    B.∵图象经过点(2,80),(4,60),
    ∴2×80=160,4×60=240,而160≠240,
    ∴图中曲线不是反比例函数的图象,该选项不符合题意;
    C.∵图象经过点 (4,60),
    ∴海拔为4千米时,大气压约为60千帕,该选项不符合题意;
    D.图中曲线表达了大气压和海拔两个量之间的变化关系,该选项符合题意.
    【点睛】本题考查了函数的图象,解题的关键是读懂题意,能正确识图.
    10. (2022河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对,在坐标系中进行描点,则正确的是( )
    A. B.
    C D.
    【答案】C
    【解析】根据题意建立函数模型可得,即,符合反比例函数,根据反比例函数的图象进行判断即可求解.
    依题意,

    ,且为整数.
    【点睛】本题考查了反比例数的应用,根据题意建立函数模型是解题的关键.
    二、填空题(共10小题,每空3分,共33分)
    1. (2022北京)在平面直角坐标系中,若点在反比例函数的图象上,则______(填“>”“=”或“<”)
    【答案】>
    【解析】根据反比例函数的性质,k>0,在每个象限内,y随x的增大而减小,进行判断即可.
    ∵k>0,
    ∴在每个象限内,y随x的增大而减小,

    ∴>.
    【点睛】本题考查了反比例函数的性质,熟练掌握函数的性质是解决问题的关键.
    2. (2022广西河池)如图,点P(x,y)在双曲线的图象上,PA⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为 _____.
    【答案】
    【解析】根据反比例函数比例系数的几何意义,即可求解.
    根据题意得:,
    ∴,
    ∵图象位于第二象限内,
    ∴,
    ∴该反比例函数解析式为.
    【点睛】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.
    3. (2022山东济宁)如图,A是双曲线上的一点,点C是OA的中点,过点C作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是___________.
    【答案】4
    【解析】根据点C是OA的中点,根据三角形中线的可得S△ACD = S△OCD, S△ACB = S△OCB,进而可得S△ABD = S△OBD,根据点B在双曲线上,BD⊥ y轴,可得S△OBD=4,进而即可求解.
    【详解】点C是OA的中点,
    ∴S△ACD = S△OCD, S△ACB = S△OCB,
    ∴S△ACD + S△ACB = S△OCD + S△OCB,
    ∴S△ABD = S△OBD,
    点B在双曲线上,BD⊥ y轴,
    ∴S△OBD=×8=4,
    ∴S△ABD =4,
    答案为:4.
    【点睛】本题考查了三角形中线的性质,反比例函数的的几何意义,掌握反比例函数的几何意义是解题的关键.
    4. (2022浙江绍兴)如图,在平面直角坐标系xOy中,点(0,4),(3,4),将向右平移到位置,的对应点是,的对应点是,函数的图象经过点和的中点,则的值是______.
    【答案】6
    【解析】【分析】作FG⊥x轴,DQ⊥x轴,FH⊥y轴,设AC=EO=BD=a,表示出四边形ACEO的面积,再根据三角形中位线的性质得出FG,EG,即可表示出四边形HFGO的面积,然后根据k的几何意义得出方程,求出a,可得答案.
    【详解】过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意,得AC=EO=BD,
    设AC=EO=BD=a,
    ∴四边形ACEO的面积是4a.
    ∵F是DE的中点,FG⊥x轴,DQ⊥x轴,
    ∴FG是△EDQ的中位线,
    ∴,,
    ∴四边形HFGO的面积为,
    ∴,
    解得,
    ∴k=6.
    故答案为:6.
    【点睛】本题主要考查了反比例函数中k的几何意义,正确的作出辅助线构造矩形是解题的关键.
    5. (2022浙江湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,,以AB为边向上作正方形ABCD.若图像经过点C的反比例函数的解析式是,则图像经过点D的反比例函数的解析式是______.
    【答案】
    【解析】过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,设,,结合正方形的性质,全等三角形的判定和性质,得到≌≌,然后表示出点C和点D的坐标,求出,即可求出答案.
    过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,如图:
    ∵,
    设,,
    ∴点A为(,0),点B为(0,);
    ∵四边形ABCD是正方形,
    ∴,,
    ∴,
    ∴,
    同理可证:,
    ∵,
    ∴≌≌,
    ∴,,
    ∴,
    ∴点C的坐标为(,),点D的坐标为(,),
    ∵点C在函数函数图像上,
    ∴,即;
    ∴,
    ∴经过点D的反比例函数解析式为;
    故答案为:.
    【点睛】本题考查了正方形的性质,全等三角形的判定和性质,反比例函数的性质,三角函数,余角的性质等知识,解题的关键是熟练掌握所学的知识,正确的表示出点C和点D的坐标,从而进行解题.
    6. (2022安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
    【答案】3
    【解析】【分析】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,先证四边形CDEB为矩形,得出CD=BE,再证Rt△COD≌Rt△BAE(HL),根据S平行四边形OCBA=4S△OCD=2,再求S△OBA=即可.
    详解】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,
    ∴CD∥BE,
    ∵四边形ABCO为平行四边形,
    ∴CB∥OA,即CB∥DE,OC=AB,
    ∴四边形CDEB为平行四边形,
    ∵CD⊥OA,
    ∴四边形CDEB为矩形,
    ∴CD=BE,
    ∴在Rt△COD和Rt△BAE中,

    Rt△COD≌Rt△BAE(HL),
    ∴S△OCD=S△ABE,
    ∵OC=AC,CD⊥OA,
    ∴OD=AD,
    ∵反比例函数的图象经过点C,
    ∴S△OCD=S△CAD=,
    ∴S平行四边形OCBA=4S△OCD=2,
    ∴S△OBA=,
    ∴S△OBE=S△OBA+S△ABE=,
    ∴.
    故答案为3.
    【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
    7. (2022浙江宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为时,的值为___________,点F的坐标为___________.
    【答案】 ①. ②. (,0)
    【解析】【分析】连接OD,作DG⊥x轴,设点B(b,),D(a,),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.
    【详解】解:如图,
    作DG⊥x轴于G,连接OD,设BC和OD交于I,
    设点B(b,),D(a,),
    由对称性可得:△BOD≌△BOA≌△OBC,
    ∴∠OBC=∠BOD,BC=OD,
    ∴OI=BI,
    ∴DI=CI,
    ∴,
    ∵∠CID=∠BIO,
    ∴△CDI∽△BOI,
    ∴∠CDI=∠BOI,
    ∴CD∥OB,
    ∴S△BOD=S△AOB=S矩形AOCB=,
    ∵S△BOE=S△DOG=|k|=3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,
    ∴S梯形BEGD=S△BOD=,
    ∴ (+)•(a-b)=,
    ∴2a2-3ab-2b2=0,
    ∴(a-2b)•(2a+b)=0,
    ∴a=2b,a=-(舍去),
    ∴D(2b,),即:(2b,),
    在Rt△BOD中,由勾股定理得,
    OD2+BD2=OB2,
    ∴[(2b)2+()2]+[(2b-b)2+(-)2]=b2+()2,
    ∴b=,
    ∴B(,2),D(2,),
    ∵直线OB的解析式为:y=2x,
    ∴直线DF的解析式为:y=2x-3,
    当y=0时,2x-3=0,
    ∴x=,
    ∴F(,0),
    ∵OE=,OF=,
    ∴EF=OF-OE=,
    ∴,
    故答案为:,(,0).
    【点睛】本题考查了矩形性质,轴对称性质,反比例函数的“k”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.
    8. (2022湖南株洲)如图所示,矩形顶点、在轴上,顶点在第一象限,轴为该矩形的一条对称轴,且矩形的面积为6.若反比例函数的图象经过点,则的值为_________.
    【答案】3
    【解析】由图得,轴把矩形平均分为两份,即可得到上半部分的面积,利用矩形的面积公式即,又由于点C在反比例函数图象上,则可求得答案.
    【详解】解:轴为该矩形的一条对称轴,且矩形的面积为6,


    故答案为3.
    【点睛】本题考查了反比例函数k的几何意义,熟练掌握是解题的关键.
    9. (2022贵州遵义)反比例函数与一次函数交于点,则的值为_____.
    【答案】6
    【解析】将点,代入,求得,进而即可求解.
    将点,代入,
    即,


    故答案为:6.
    【点睛】本题考查了一次函数与反比例函数综合,求得点的坐标是解题的关键.
    10. (2022陕西)已知点A(−2,m)在一个反比例函数的图象上,点A′与点A关于y轴对称.若点A′在正比例函数的图象上,则这个反比例函数的表达式为_______.
    【答案】y=
    【解析】根据点A与点A′关于y轴对称,得到A′(2,m),由点A′在正比例函数的图象上,求得m的值,再利用待定系数法求解即可.
    ∵点A与点A′关于y轴对称,且A(−2,m),
    ∴A′(2,m),
    ∵点A′在正比例函数的图象上,
    ∴m=×2,
    解得:m=1,
    ∴A(−2,1),
    设这个反比例函数的表达式为y=,
    ∵A(−2,1) 在这个反比例函数的图象上,
    ∴k=-2×1=-2,
    ∴这个反比例函数的表达式为y=,
    故答案为:y=.
    【点睛】本题考查反比例函数图象上点的坐标特征、关于x轴、y轴对称的点的坐标特征,解答本题的关键是明确题意,求出m的值.
    三、解答题(本大题有6道小题,共57分)
    1. (8分)(2022浙江金华)如图,点A在第一象限内,轴于点B,反比例函数的图象分别交于点C,D.已知点C的坐标为.
    (1)求k的值及点D的坐标.
    (2)已知点P在该反比例函数图象上,且在的内部(包括边界),直接写出点P的横坐标x的取值范围.
    【答案】(1),; (2);
    【解析】【分析】(1)由C点坐标可得k,再由D点纵坐标可得D点横坐标;
    (2)由C、D两点的横坐标即可求得P点横坐标取值范围;
    【小问1详解】
    解:把C(2,2)代入,得,,
    ∴反比例函数函数为(x>0),
    ∵AB⊥x轴,BD=1,
    ∴D点纵坐标为1,
    把代入,得,
    ∴点D坐标为(4,1);
    【小问2详解】
    解:∵P点在点C(2,2)和点D(4,1)之间,
    ∴点P的横坐标:;
    【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.
    2.(9分) (2022广西百色)已知:点 A(1,3)是反比例函数(k≠0)的图象与直线( m≠0)的一个交点.
    (1)求k 、m的值:
    (2)在第一象限内,当时,请直接写出x的取值范围
    【答案】(1) (2)
    【解析】【分析】(1)把点A(1,3)分别代入和,求解即可;
    (2)直接根据图象作答即可.
    【详解】(1)点A(1,3)是反比例函数(k≠0)的图象与直线(m≠0)的一个交点,
    把点A(1,3)分别代入和,
    得,

    (2)第一象限内,,
    由图像得.
    【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,图象法解不等式,熟练掌握知识点并能够运用数形结合的思想是解题的关键.
    3. (10分)(2022甘肃威武)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x-1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.
    (1)求此反比例函数的表达式;
    (2)求△BCE的面积.
    【答案】(1) (2)1
    【解析】【分析】(1)根据直线y=x-1求出点A坐标,进而确定OA,AD的值,再确定点C的坐标,代入反比例函数的关系式即可;
    (2)求出点E坐标,进而求出EC,再求出一次函数与反比例函数在第一象限的交点B的坐标,由三角形的面积的计算方法进行计算即可.
    【详解】(1)解:当y=0时,即x-1=0,
    ∴x=1,
    即直线y=x-1与x轴交于点A的坐标为(1,0),
    ∴OA=1=AD,
    又∵CD=3,
    ∴点C的坐标为(2,3),
    而点C(2,3)在反比例函数y=的图象上,
    ∴k=2×3=6,
    ∴反比例函数的图象为y=;
    (2)解:方程组的正数解为,
    ∴点B坐标为(3,2),
    当x=2时,y=2-1=1,
    ∴点E的坐标为(2,1),即DE=1,
    ∴EC=3-1=2,
    ∴S△BCE=×2×(3-2)=1,
    答:△BCE的面积为1.
    【点睛】考查反比例函数、一次函数交点坐标以及待定系数法求函数关系式,将一次函数、反比例函数的关系式联立方程组是求出交点坐标的基本方法,将点的坐标转化为线段的长是正确解答的关键.
    4. (10分)(2022重庆)已知一次函数的图象与反比例函数的图象相交于点,.
    (1)求一次函数的表达式,并在图中画出这个一次函数的图象;
    (2)根据函数图象,直接写出不等式的解集;
    (3)若点是点关于轴的对称点,连接,,求的面积.
    【答案】(1),图见解析
    (2)或 (3)12
    【解析】【分析】(1)把,分别代入得到m,n的值,得到点A和点B的坐标,利用待定系数法求出一次函数的表达式,并画出图象即可;
    (2)由函数图象可知,当 或时,一次函数的图象在反比例函数的图象的上方,即可得到答案;
    (3)根据点是点关于轴的对称点,求出点C的坐标,得到BC的长,进一步求出三角形的面积即可.
    【小问1详解】
    解:把,分别代入得,
    ,,
    解得m=4,n=﹣2,
    ∴ 点A(1,4),点B(﹣2,﹣2),
    把点A(1,4),点B(﹣2,﹣2)代入一次函数得,

    解得,
    ∴一次函数的表达式是y=2x+2,
    这个一次函数的图象如图,
    【小问2详解】
    解:由函数图象可知,当 或时,一次函数的图象在反比例函数的图象的上方,
    ∴不等式的解集为或;
    【小问3详解】
    解:∵点是点关于轴的对称点,点B的坐标是(﹣2,﹣2),
    ∴点C的坐标是(2,﹣2),
    ∴BC=2-(﹣2)=4,
    ∴.
    【点睛】此题是反比例函数与一次函数综合题,主要考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题、三角形的面积,熟练掌握一次函数与反比例函数的性质是解题的关键.
    5. (10分)(2022济南)如图,一次函数的图象与反比例函数的图象交于点,与y轴交于点B.
    (1)求a,k的值;
    (2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
    ①求△ABC的面积;
    ②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.
    【答案】(1),; (2)①8;②符合条件的点坐标是和.
    【解析】【分析】(1)将点代入,求出,即可得,将点代入,即可求出k;
    (2)①如图,过A作轴于点,过作轴于点,交于点,求出,,得到CE,进一步可求出△ABC的面积;②设,.分情况讨论:ⅰ、当四边形为平行四边形时,ⅱ、当四边形为平行四边形时,计算即可.
    【小问1详解】
    解:将点代入,得,,
    将点代入,得,
    反比例函数的解析式为.
    【小问2详解】
    解:①如图,过A作轴于点,过作轴于点,交于点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    ②分两种情况:设,.
    ⅰ、如图,当四边形为平行四边形时,
    ∵点向下平移1个单位、向右平移个单位得到点,
    ∴点向下平移1个单位,向右平移个单位得到点,
    ∴,,
    ∴.
    ⅱ、如图,当四边形为平行四边形时,
    ∵点向上平移1个单位,向左平移个单位得到点,
    ∴点向上平移1个单位,向左平移个单位得到点,
    ∴,,
    ∴.
    综上所述,符合条件的点坐标是和.
    【点睛】本题考查一次函数与反比例函数的综合,待定系数法求函数解析式,平行四边形的性质,解题的关键是掌握待定系数法求函数解析式,平行四边形的性质.
    6. (10分)(2022广西柳州)如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图像与反比例函数y=(k2≠0)的图像相交于A(3,4),B(﹣4,m)两点.
    (1)求一次函数和反比例函数的解析式;
    (2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.
    【答案】(1)y=x+1;
    (2)△AOD的面积为10
    【解析】【分析】(1)把点A的坐标代入反比例函数解析式求出值,从而得到反比例函数解析式,再把点B的坐标代入反比例函数解析式求出m的值,然后利用待定系数法求函数解析式求出一次函数解析式;
    (2)利用勾股定理求得OA,即可求得OD的长度,然后利用三角形面积公式求得即可.
    (1)∵反比例函数图像与一次函数图像相交于点A(3,4),B(﹣4,m),

    解得k2=12,
    ∴反比例函数解析式为,

    解得m=﹣3,
    ∴点B的坐标为(﹣4,﹣3),

    解得,
    ∴一次函数解析式为y=x+1.
    (2)∵A(3,4),

    ∴OA=OD,
    ∴OD=5,
    △的面积×5×4=10.
    【点睛】本题是反比例函数图像与一次函数图像交点问题,考查了待定系数法求函数的解析式,反比例函数图像上点的坐标特征,勾股定理的应用以及三角形面积,根据交点A的坐标求出反比例函数解析式以及点B的坐标是解题的关键.
    5





    1
    20
    30
    40
    50
    60
    70
    80
    90
    100
    相关试卷

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题27相似解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题27相似原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题24圆解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题24圆原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题23旋转解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题23旋转原卷版doc等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map