





【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版)
展开(试卷满分120分,答题时间120分钟)
一、选择题(共10小题,每题3分,共30分)
1. (2022广西贺州)已知一次函数的图象如图所示,则与的图象为( )
A. B. C. D.
【答案】A
【解析】根据题意可得,从而得到一次函数的图象经过第一、二、四象限,反比函数的图象位于第一、三象限内,即可求解.
根据题意得:,
∴,
∴一次函数的图象经过第一、二、四象限,反比函数的图象位于第一、三象限内.
故选:A
【点睛】本题主要考查了一次函数和反比例函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质是解题的关键.
2. (2022山东日照)如图,矩形OABC与反比例函数(k1是非零常数,x>0)的图象交于点M,N,与反比例函数(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1-k2=( )
A. 3B. -3C. D.
【答案】B
【解析】根据矩形的性质以及反比例函数系数k的几何意义即可得出结论.
∵点M、N均是反比例函数(k1是非零常数,x>0)的图象上,
∴,
∵矩形OABC的顶点B在反比例函数(k2是非零常数,x>0)的图象上,
∴S矩形OABC=k2,
∴S四边形OMBN=S矩形OABC-S△OAM-S△OCN=3,
∴k2-k1=3,
∴k1-k2=-3,
故选:B.
【点睛】本题考查了矩形的性质,反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
3. (2022广东)点,,,在反比例函数图象上,则,,,中最小的是( )
A. B. C. D.
【答案】D
【解析】根据反比例函数的性质可直接进行求解.
由反比例函数解析式可知:,
∴在每个象限内,y随x的增大而减小,
∵点,,,在反比例函数图象上,
∴,
故选D.
【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.
4.(2022海南)若反比例函数的图象经过点,则它的图象也一定经过的点
是( )
A. B. C. D.
【答案】C
【解析】【分析】先利用反比例函数的图象经过点,求出k的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.
∵反比例函数的图象经过点,
∴k=2×(﹣3)=﹣6,
∵(﹣2)×(﹣3)=6≠﹣6,
(﹣3)×(﹣2)=6≠﹣6,
1×(﹣6)=﹣6,
,6×1=6≠﹣6,
则它一定还经过(1,﹣6),
故选:C.
【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.熟练掌握反比例函数的性质是解题的关键.
5. (2022长春)如图,在平面直角坐标系中,点P在反比例函数(,)的图象上,其纵坐标为2,过点P作//轴,交x轴于点Q,将线段绕点Q顺时针旋转60°得到线段.若点M也在该反比例函数的图象上,则k的值为( )
A. B. C. D. 4
【答案】C
【解析】作MN⊥x轴交于点N,分别表示出ON、MN,利用k值的几何意义列式即可求出结果.
作MN⊥x轴交于点N,如图所示,
∵P点纵坐标为:2,
∴P点坐标表示为:(,2),PQ=2,
由旋转可知:QM=PQ=2,∠PQM=60°,
∴∠MQN=30°,
∴MN=,QN=,
∴,
即:,
解得:k=,
故选:C.
【点睛】本题主要考查的是k的几何意义,表示出对应线段是解题的关键.
6. (2022湖南邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是( )
A. 1B. C. 2D.
【答案】B
【解析】由反比例函数的几何意义可知,k=1,也就是△AOB的面积的2倍是1,求出△AOB的面积是.
设A(x,y)则OB=x,AB=y,
∵A为反比例函数y=图象上一点,
∴xy=1,
∴S△ABO=AB•OB=xy=×1=,
【点睛】考查反比例函数的几何意义,即k的绝对值,等于△AOB的面积的2倍,数形结合比较直观.
7. (2022湖南怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图像于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为( )
A. 8B. 9C. 10D. 11
【答案】D
【解析】设,由S△BCD=即可求解.
设,
∵BD⊥y轴
∴S△BCD==5,
解得:
【点睛】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.
8. (2022湖北宜昌)已知经过闭合电路的电流(单位:)与电路的电阻(单位:)是反比例函数关系.根据下表判断和的大小关系为( )
A. B. C. D.
【答案】A
【解析】根据电流与电路的电阻是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x和y的变化规律是单调的,即可判断
∵电流与电路的电阻是反比例函数关系
由表格:;
∴在第一象限内,I随R的增大而减小
∵
∴
【点睛】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减.
9. (2022山东潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )
A.海拔越高,大气压越大
B. 图中曲线是反比例函数的图象
C. 海拔为4千米时,大气压约为70千帕
D. 图中曲线表达了大气压和海拔两个量之间的变化关系
【答案】D
【解析】根据图象中的数据回答即可.
A.海拔越高,大气压越小,该选项不符合题意;
B.∵图象经过点(2,80),(4,60),
∴2×80=160,4×60=240,而160≠240,
∴图中曲线不是反比例函数的图象,该选项不符合题意;
C.∵图象经过点 (4,60),
∴海拔为4千米时,大气压约为60千帕,该选项不符合题意;
D.图中曲线表达了大气压和海拔两个量之间的变化关系,该选项符合题意.
【点睛】本题考查了函数的图象,解题的关键是读懂题意,能正确识图.
10. (2022河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对,在坐标系中进行描点,则正确的是( )
A. B.
C D.
【答案】C
【解析】根据题意建立函数模型可得,即,符合反比例函数,根据反比例函数的图象进行判断即可求解.
依题意,
,
,且为整数.
【点睛】本题考查了反比例数的应用,根据题意建立函数模型是解题的关键.
二、填空题(共10小题,每空3分,共33分)
1. (2022北京)在平面直角坐标系中,若点在反比例函数的图象上,则______(填“>”“=”或“<”)
【答案】>
【解析】根据反比例函数的性质,k>0,在每个象限内,y随x的增大而减小,进行判断即可.
∵k>0,
∴在每个象限内,y随x的增大而减小,
,
∴>.
【点睛】本题考查了反比例函数的性质,熟练掌握函数的性质是解决问题的关键.
2. (2022广西河池)如图,点P(x,y)在双曲线的图象上,PA⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为 _____.
【答案】
【解析】根据反比例函数比例系数的几何意义,即可求解.
根据题意得:,
∴,
∵图象位于第二象限内,
∴,
∴该反比例函数解析式为.
【点睛】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.
3. (2022山东济宁)如图,A是双曲线上的一点,点C是OA的中点,过点C作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是___________.
【答案】4
【解析】根据点C是OA的中点,根据三角形中线的可得S△ACD = S△OCD, S△ACB = S△OCB,进而可得S△ABD = S△OBD,根据点B在双曲线上,BD⊥ y轴,可得S△OBD=4,进而即可求解.
【详解】点C是OA的中点,
∴S△ACD = S△OCD, S△ACB = S△OCB,
∴S△ACD + S△ACB = S△OCD + S△OCB,
∴S△ABD = S△OBD,
点B在双曲线上,BD⊥ y轴,
∴S△OBD=×8=4,
∴S△ABD =4,
答案为:4.
【点睛】本题考查了三角形中线的性质,反比例函数的的几何意义,掌握反比例函数的几何意义是解题的关键.
4. (2022浙江绍兴)如图,在平面直角坐标系xOy中,点(0,4),(3,4),将向右平移到位置,的对应点是,的对应点是,函数的图象经过点和的中点,则的值是______.
【答案】6
【解析】【分析】作FG⊥x轴,DQ⊥x轴,FH⊥y轴,设AC=EO=BD=a,表示出四边形ACEO的面积,再根据三角形中位线的性质得出FG,EG,即可表示出四边形HFGO的面积,然后根据k的几何意义得出方程,求出a,可得答案.
【详解】过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意,得AC=EO=BD,
设AC=EO=BD=a,
∴四边形ACEO的面积是4a.
∵F是DE的中点,FG⊥x轴,DQ⊥x轴,
∴FG是△EDQ的中位线,
∴,,
∴四边形HFGO的面积为,
∴,
解得,
∴k=6.
故答案为:6.
【点睛】本题主要考查了反比例函数中k的几何意义,正确的作出辅助线构造矩形是解题的关键.
5. (2022浙江湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,,以AB为边向上作正方形ABCD.若图像经过点C的反比例函数的解析式是,则图像经过点D的反比例函数的解析式是______.
【答案】
【解析】过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,设,,结合正方形的性质,全等三角形的判定和性质,得到≌≌,然后表示出点C和点D的坐标,求出,即可求出答案.
过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,如图:
∵,
设,,
∴点A为(,0),点B为(0,);
∵四边形ABCD是正方形,
∴,,
∴,
∴,
同理可证:,
∵,
∴≌≌,
∴,,
∴,
∴点C的坐标为(,),点D的坐标为(,),
∵点C在函数函数图像上,
∴,即;
∴,
∴经过点D的反比例函数解析式为;
故答案为:.
【点睛】本题考查了正方形的性质,全等三角形的判定和性质,反比例函数的性质,三角函数,余角的性质等知识,解题的关键是熟练掌握所学的知识,正确的表示出点C和点D的坐标,从而进行解题.
6. (2022安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
【答案】3
【解析】【分析】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,先证四边形CDEB为矩形,得出CD=BE,再证Rt△COD≌Rt△BAE(HL),根据S平行四边形OCBA=4S△OCD=2,再求S△OBA=即可.
详解】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,
∴CD∥BE,
∵四边形ABCO为平行四边形,
∴CB∥OA,即CB∥DE,OC=AB,
∴四边形CDEB为平行四边形,
∵CD⊥OA,
∴四边形CDEB为矩形,
∴CD=BE,
∴在Rt△COD和Rt△BAE中,
,
Rt△COD≌Rt△BAE(HL),
∴S△OCD=S△ABE,
∵OC=AC,CD⊥OA,
∴OD=AD,
∵反比例函数的图象经过点C,
∴S△OCD=S△CAD=,
∴S平行四边形OCBA=4S△OCD=2,
∴S△OBA=,
∴S△OBE=S△OBA+S△ABE=,
∴.
故答案为3.
【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
7. (2022浙江宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为时,的值为___________,点F的坐标为___________.
【答案】 ①. ②. (,0)
【解析】【分析】连接OD,作DG⊥x轴,设点B(b,),D(a,),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.
【详解】解:如图,
作DG⊥x轴于G,连接OD,设BC和OD交于I,
设点B(b,),D(a,),
由对称性可得:△BOD≌△BOA≌△OBC,
∴∠OBC=∠BOD,BC=OD,
∴OI=BI,
∴DI=CI,
∴,
∵∠CID=∠BIO,
∴△CDI∽△BOI,
∴∠CDI=∠BOI,
∴CD∥OB,
∴S△BOD=S△AOB=S矩形AOCB=,
∵S△BOE=S△DOG=|k|=3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,
∴S梯形BEGD=S△BOD=,
∴ (+)•(a-b)=,
∴2a2-3ab-2b2=0,
∴(a-2b)•(2a+b)=0,
∴a=2b,a=-(舍去),
∴D(2b,),即:(2b,),
在Rt△BOD中,由勾股定理得,
OD2+BD2=OB2,
∴[(2b)2+()2]+[(2b-b)2+(-)2]=b2+()2,
∴b=,
∴B(,2),D(2,),
∵直线OB的解析式为:y=2x,
∴直线DF的解析式为:y=2x-3,
当y=0时,2x-3=0,
∴x=,
∴F(,0),
∵OE=,OF=,
∴EF=OF-OE=,
∴,
故答案为:,(,0).
【点睛】本题考查了矩形性质,轴对称性质,反比例函数的“k”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.
8. (2022湖南株洲)如图所示,矩形顶点、在轴上,顶点在第一象限,轴为该矩形的一条对称轴,且矩形的面积为6.若反比例函数的图象经过点,则的值为_________.
【答案】3
【解析】由图得,轴把矩形平均分为两份,即可得到上半部分的面积,利用矩形的面积公式即,又由于点C在反比例函数图象上,则可求得答案.
【详解】解:轴为该矩形的一条对称轴,且矩形的面积为6,
,
,
故答案为3.
【点睛】本题考查了反比例函数k的几何意义,熟练掌握是解题的关键.
9. (2022贵州遵义)反比例函数与一次函数交于点,则的值为_____.
【答案】6
【解析】将点,代入,求得,进而即可求解.
将点,代入,
即,
,
,
故答案为:6.
【点睛】本题考查了一次函数与反比例函数综合,求得点的坐标是解题的关键.
10. (2022陕西)已知点A(−2,m)在一个反比例函数的图象上,点A′与点A关于y轴对称.若点A′在正比例函数的图象上,则这个反比例函数的表达式为_______.
【答案】y=
【解析】根据点A与点A′关于y轴对称,得到A′(2,m),由点A′在正比例函数的图象上,求得m的值,再利用待定系数法求解即可.
∵点A与点A′关于y轴对称,且A(−2,m),
∴A′(2,m),
∵点A′在正比例函数的图象上,
∴m=×2,
解得:m=1,
∴A(−2,1),
设这个反比例函数的表达式为y=,
∵A(−2,1) 在这个反比例函数的图象上,
∴k=-2×1=-2,
∴这个反比例函数的表达式为y=,
故答案为:y=.
【点睛】本题考查反比例函数图象上点的坐标特征、关于x轴、y轴对称的点的坐标特征,解答本题的关键是明确题意,求出m的值.
三、解答题(本大题有6道小题,共57分)
1. (8分)(2022浙江金华)如图,点A在第一象限内,轴于点B,反比例函数的图象分别交于点C,D.已知点C的坐标为.
(1)求k的值及点D的坐标.
(2)已知点P在该反比例函数图象上,且在的内部(包括边界),直接写出点P的横坐标x的取值范围.
【答案】(1),; (2);
【解析】【分析】(1)由C点坐标可得k,再由D点纵坐标可得D点横坐标;
(2)由C、D两点的横坐标即可求得P点横坐标取值范围;
【小问1详解】
解:把C(2,2)代入,得,,
∴反比例函数函数为(x>0),
∵AB⊥x轴,BD=1,
∴D点纵坐标为1,
把代入,得,
∴点D坐标为(4,1);
【小问2详解】
解:∵P点在点C(2,2)和点D(4,1)之间,
∴点P的横坐标:;
【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.
2.(9分) (2022广西百色)已知:点 A(1,3)是反比例函数(k≠0)的图象与直线( m≠0)的一个交点.
(1)求k 、m的值:
(2)在第一象限内,当时,请直接写出x的取值范围
【答案】(1) (2)
【解析】【分析】(1)把点A(1,3)分别代入和,求解即可;
(2)直接根据图象作答即可.
【详解】(1)点A(1,3)是反比例函数(k≠0)的图象与直线(m≠0)的一个交点,
把点A(1,3)分别代入和,
得,
;
(2)第一象限内,,
由图像得.
【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,图象法解不等式,熟练掌握知识点并能够运用数形结合的思想是解题的关键.
3. (10分)(2022甘肃威武)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x-1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.
(1)求此反比例函数的表达式;
(2)求△BCE的面积.
【答案】(1) (2)1
【解析】【分析】(1)根据直线y=x-1求出点A坐标,进而确定OA,AD的值,再确定点C的坐标,代入反比例函数的关系式即可;
(2)求出点E坐标,进而求出EC,再求出一次函数与反比例函数在第一象限的交点B的坐标,由三角形的面积的计算方法进行计算即可.
【详解】(1)解:当y=0时,即x-1=0,
∴x=1,
即直线y=x-1与x轴交于点A的坐标为(1,0),
∴OA=1=AD,
又∵CD=3,
∴点C的坐标为(2,3),
而点C(2,3)在反比例函数y=的图象上,
∴k=2×3=6,
∴反比例函数的图象为y=;
(2)解:方程组的正数解为,
∴点B坐标为(3,2),
当x=2时,y=2-1=1,
∴点E的坐标为(2,1),即DE=1,
∴EC=3-1=2,
∴S△BCE=×2×(3-2)=1,
答:△BCE的面积为1.
【点睛】考查反比例函数、一次函数交点坐标以及待定系数法求函数关系式,将一次函数、反比例函数的关系式联立方程组是求出交点坐标的基本方法,将点的坐标转化为线段的长是正确解答的关键.
4. (10分)(2022重庆)已知一次函数的图象与反比例函数的图象相交于点,.
(1)求一次函数的表达式,并在图中画出这个一次函数的图象;
(2)根据函数图象,直接写出不等式的解集;
(3)若点是点关于轴的对称点,连接,,求的面积.
【答案】(1),图见解析
(2)或 (3)12
【解析】【分析】(1)把,分别代入得到m,n的值,得到点A和点B的坐标,利用待定系数法求出一次函数的表达式,并画出图象即可;
(2)由函数图象可知,当 或时,一次函数的图象在反比例函数的图象的上方,即可得到答案;
(3)根据点是点关于轴的对称点,求出点C的坐标,得到BC的长,进一步求出三角形的面积即可.
【小问1详解】
解:把,分别代入得,
,,
解得m=4,n=﹣2,
∴ 点A(1,4),点B(﹣2,﹣2),
把点A(1,4),点B(﹣2,﹣2)代入一次函数得,
,
解得,
∴一次函数的表达式是y=2x+2,
这个一次函数的图象如图,
【小问2详解】
解:由函数图象可知,当 或时,一次函数的图象在反比例函数的图象的上方,
∴不等式的解集为或;
【小问3详解】
解:∵点是点关于轴的对称点,点B的坐标是(﹣2,﹣2),
∴点C的坐标是(2,﹣2),
∴BC=2-(﹣2)=4,
∴.
【点睛】此题是反比例函数与一次函数综合题,主要考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题、三角形的面积,熟练掌握一次函数与反比例函数的性质是解题的关键.
5. (10分)(2022济南)如图,一次函数的图象与反比例函数的图象交于点,与y轴交于点B.
(1)求a,k的值;
(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
①求△ABC的面积;
②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.
【答案】(1),; (2)①8;②符合条件的点坐标是和.
【解析】【分析】(1)将点代入,求出,即可得,将点代入,即可求出k;
(2)①如图,过A作轴于点,过作轴于点,交于点,求出,,得到CE,进一步可求出△ABC的面积;②设,.分情况讨论:ⅰ、当四边形为平行四边形时,ⅱ、当四边形为平行四边形时,计算即可.
【小问1详解】
解:将点代入,得,,
将点代入,得,
反比例函数的解析式为.
【小问2详解】
解:①如图,过A作轴于点,过作轴于点,交于点,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
∴.
②分两种情况:设,.
ⅰ、如图,当四边形为平行四边形时,
∵点向下平移1个单位、向右平移个单位得到点,
∴点向下平移1个单位,向右平移个单位得到点,
∴,,
∴.
ⅱ、如图,当四边形为平行四边形时,
∵点向上平移1个单位,向左平移个单位得到点,
∴点向上平移1个单位,向左平移个单位得到点,
∴,,
∴.
综上所述,符合条件的点坐标是和.
【点睛】本题考查一次函数与反比例函数的综合,待定系数法求函数解析式,平行四边形的性质,解题的关键是掌握待定系数法求函数解析式,平行四边形的性质.
6. (10分)(2022广西柳州)如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图像与反比例函数y=(k2≠0)的图像相交于A(3,4),B(﹣4,m)两点.
(1)求一次函数和反比例函数的解析式;
(2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.
【答案】(1)y=x+1;
(2)△AOD的面积为10
【解析】【分析】(1)把点A的坐标代入反比例函数解析式求出值,从而得到反比例函数解析式,再把点B的坐标代入反比例函数解析式求出m的值,然后利用待定系数法求函数解析式求出一次函数解析式;
(2)利用勾股定理求得OA,即可求得OD的长度,然后利用三角形面积公式求得即可.
(1)∵反比例函数图像与一次函数图像相交于点A(3,4),B(﹣4,m),
,
解得k2=12,
∴反比例函数解析式为,
,
解得m=﹣3,
∴点B的坐标为(﹣4,﹣3),
,
解得,
∴一次函数解析式为y=x+1.
(2)∵A(3,4),
,
∴OA=OD,
∴OD=5,
△的面积×5×4=10.
【点睛】本题是反比例函数图像与一次函数图像交点问题,考查了待定系数法求函数的解析式,反比例函数图像上点的坐标特征,勾股定理的应用以及三角形面积,根据交点A的坐标求出反比例函数解析式以及点B的坐标是解题的关键.
5
…
…
…
…
…
1
20
30
40
50
60
70
80
90
100
【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题27相似解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题27相似原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题24圆解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题24圆原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题23旋转解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题23旋转原卷版doc等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。