所属成套资源:高考数学大一轮单元复习检测(新高考专用)
- 专题01 集合与常用逻辑用语 (亮点讲) 教案 25 次下载
- 专题01 集合与常用逻辑用语(亮点练) 教案 21 次下载
- 专题02 不等式及应用(亮点练) 教案 20 次下载
- 专题03 函数概念与基本初等函数(亮点讲) 教案 39 次下载
- 专题03 函数概念与基本初等函数(亮点练) 教案 24 次下载
专题02 不等式及应用(亮点讲)
展开
这是一份专题02 不等式及应用(亮点讲),文件包含专题02不等式及应用亮点讲解析版docx、专题02不等式及应用亮点讲原卷版docx等2份教案配套教学资源,其中教案共50页, 欢迎下载使用。
1. 两个实数比较大小的方法
(1)作差法eq \b\lc\{(\a\vs4\al\c1(a-b>0⇔a>b,,a-b=0⇔a=b,,a-b0)型不等式的解法
①|ax+b|≤c⇔-c≤ax+b≤c;
②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想;
②利用“零点分段法”求解,体现了分类讨论的思想;
③通过构造函数,利用函数的图像求解,体现了函数与方程的思想.
7.基本不等式:
1)如果,那么(当且仅当时取等号“=”).
推论:().
2)如果,,则,(当且仅当时取等号“=”).
推论:(,);.
3).
【温馨提示】1.利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.
2.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.
注意:形如y=x+eq \f(a,x)(a>0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.
3.(1)在利用均值定理求最值时,要紧扣“一正、二定、三相等”的条件.“一正”是说每个项都必须为正值,“二定”是说各个项的和(或积)必须为定值.“三相等”是说各项的值相等时,等号成立.
(2)多次使用均值不等式解决同一问题时,要保持每次等号成立条件的一致性和不等号方向的一致性.
4.利用基本不等式解决实际问题时的一般步骤为:
(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案.
5.利用基本不等式求最值要灵活运用两个公式,(1) ,当且仅当时取等号;(2) , ,当且仅当时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.
常考题型
1.不等关系及不等式:
【例题1】一般认为,民用住宅窗户面积a与地板面积b的比应不小于,即,而且比值越大采光效果越好,若窗户面积与地板面积同时增加m,采光效果变好还是变坏?请将你的判断用不等式表示__________
【温馨提示3】用数学式子表达不等关系时,一定要在读懂题的要求下用准确的不等关系表达变量间的关系,特别要注意的是等号的包含与不包含.
2.不等式的性质及应用:
【例题2-1】对于实数a,b,c,下列命题中的真命题是 ( )
A. 若a>b,则ac2>bc2 B. a>b>0,则
C. a<b<0,则 D. a>b,,则a>0,b<0
【自我提升】已知,且,则以下不正确的是( )
A.B.C.D.
【例题2-2】(多选题)已知,,且,则下列不等关系成立的是( )
A.B.C.D.
【自我提升】(多选)已知a,b,c满足c
相关教案
这是一份专题10 直线与圆(亮点讲),文件包含专题10直线与圆亮点讲解析版docx、专题10直线与圆亮点讲原卷版docx等2份教案配套教学资源,其中教案共73页, 欢迎下载使用。
这是一份专题08 立体几何(亮点讲),文件包含专题08立体几何亮点讲解析版docx、专题08立体几何亮点讲原卷版docx等2份教案配套教学资源,其中教案共122页, 欢迎下载使用。
这是一份专题07 数列(亮点讲),文件包含专题07数列亮点讲解析版docx、专题07数列亮点讲原卷版docx等2份教案配套教学资源,其中教案共112页, 欢迎下载使用。

