山东省蒙阴县2021-2022学年中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )
A.16+16 B.16+8 C.24+16 D.4+4
2.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
A. B. C. D.
3.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
4.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B.1 C. D.
5.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
6. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
7.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
8.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )
A.90° B.120° C.150° D.180°
9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1
10.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简: =____.
12.分解因式:9x3﹣18x2+9x= .
13.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.
14.分式方程的解为x=_____.
15.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.
16.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.
三、解答题(共8题,共72分)
17.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)
18.(8分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
19.(8分)已知:如图,∠ABC,射线BC上一点D,
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
20.(8分)解分式方程:
- =
21.(8分)解方程:
22.(10分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标
画树状图列表,写出点M所有可能的坐标;
求点在函数的图象上的概率.
23.(12分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数 | 1 | 3 | 6 | 10 | 15 | 21 | a | … |
正方形数 | 1 | 4 | 9 | 16 | 25 | b | 49 | … |
五边形数 | 1 | 5 | 12 | 22 | C | 51 | 70 | … |
(1)按照规律,表格中a=___,b=___,c=___.
(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
24.(1)计算:()﹣1+﹣(π﹣2018)0﹣4cos30°
(2)解不等式组:,并把它的解集在数轴上表示出来.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析出此三棱柱的立体图像即可得出答案.
【详解】
由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=×4=,所以侧面积之和为×2+4×4= 16+16,所以答案选择A项.
【点睛】
本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.
2、D
【解析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.
【详解】
A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;
B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;
C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;
D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.
故选D.
【点睛】
本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.
3、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
4、A
【解析】
∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,
∴从四张卡片中任取一张,恰好是中心对称图形的概率=.
故选A.
5、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
6、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
567000=5.67×105,
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
8、D
【解析】
试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.
考点:圆锥的计算.
9、B
【解析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:1.
故选B.
10、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.
【详解】
原式,
故答案为
【点睛】
本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
12、9x
【解析】
试题分析:首先提取公因式9x,然后利用完全平方公式进行因式分解.原式=9x(-2x+1)=9x.
考点:因式分解
13、540°
【解析】
根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.
考点:多边形的内角和与外角和
14、2
【解析】
根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x,解得x=2,检验可知x=2是原分式方程的解.
故答案为2.
15、1﹣1或﹣1
【解析】
直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.
【详解】
解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,
则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),
把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,
则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),
当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,
直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,
即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1 ,
所以k的值为1+1或1-1.
当k=1+1时,经检验,切点横坐标为x=-<-1不符合题意,舍去.
当y=kx+4过(1,0)时,k=-1,也满足条件,
故答案为1-1或-1.
【点睛】
本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
16、65°或25°
【解析】
首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.
【详解】
解:分情况讨论:(1)∵AE平分∠BAD,
∴∠EAD=∠EAB,
∵AD∥BC,
∴∠EAD=∠AEB,
∴∠BAD=∠AEB,
∵∠ABC=50°,
∴∠AEB= •(180°-50°)=65°.
(2)∵AE平分∠BAD,
∴∠EAD=∠EAB= ,
∵AD∥BC,
∴∠AEB=∠DAE=,∠DAB=∠ABC,
∵∠ABC=50°,
∴∠AEB= ×50°=25°.
故答案为:65°或25°.
【点睛】
本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
三、解答题(共8题,共72分)
17、客车不能通过限高杆,理由见解析
【解析】
根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.
【详解】
∵DE⊥BC,DF⊥AB,
∴∠EDF=∠ABC=14°.
在Rt△EDF中,∠DFE=90°,
∵cos∠EDF=,
∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.
∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,
∴客车不能通过限高杆.
【点睛】
考查解直角三角形,选择合适的锐角三角函数是解题的关键.
18、
【解析】
过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,
∵,
∴AD====x,
由AD+BD=AB可得x+x=10,
解得:x=5﹣5,
答:飞机飞行的高度为(5﹣5)km.
19、见解析.
【解析】
根据角平分线的性质、线段的垂直平分线的性质即可解决问题.
【详解】
∵点P在∠ABC的平分线上,
∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),
∵点P在线段BD的垂直平分线上,
∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),
如图所示:
【点睛】
本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.
20、方程无解
【解析】
找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
【详解】
解:方程的两边同乘(x+1)(x−1),
得:,
,
∴此方程无解
【点睛】
本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.
21、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
22、见解析;.
【解析】
(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)找出点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.
【详解】
画树状图得:
共有12种等可能的结果、、、、、、、、、、、;
在所有12种等可能结果中,在函数的图象上的有、、这3种结果,
点在函数的图象上的概率为.
【点睛】
本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
23、1 2 3 n2 n2 +x-n
【解析】
分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.
详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
∴第n个“三角形数”是, ∴a=7×82=17×82=1.
∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,
∴第n个“正方形数”是n2, ∴b=62=2.
∵前4个“正方形数”分别是:1=,5=,12=,22=,
∴第n个“五边形数”是n(3n−1)2n(3n−1)2, ∴c==3.
(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
∴第n个“五边形数”是n2+x-n.
点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
24、 (1)-3;(2).
【解析】
分析:
(1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;
(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.
(1)原式=
=
= -3.
(2)
解不等式①得: ,
解不等式②得:,
∴不等式组的解集为:
不等式组的解集在数轴上表示:
点睛:熟记零指数幂的意义:,(,为正整数)即30°角的余弦函数值是本题解题的关键.
2023年山东省临沂市蒙阴县中考数学二模试卷(含解析): 这是一份2023年山东省临沂市蒙阴县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省临沂市蒙阴县重点中学2021-2022学年中考联考数学试题含解析: 这是一份山东省临沂市蒙阴县重点中学2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022学年山东省蒙阴县中考数学模拟试题含解析: 这是一份2021-2022学年山东省蒙阴县中考数学模拟试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如果等内容,欢迎下载使用。

