


湖南省岳阳市平江县达标名校2022年中考二模数学试题含解析
展开
这是一份湖南省岳阳市平江县达标名校2022年中考二模数学试题含解析,共15页。试卷主要包含了答题时请按要求用笔,一、单选题,-5的倒数是,若△÷,则“△”可能是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(共10小题,每小题3分,共30分)1.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是( )A.点A落在BC边的中点 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC2.下列计算正确的是( )A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b23.是两个连续整数,若,则分别是( ).A.2,3 B.3,2 C.3,4 D.6,84.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A. B. C. D.5.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).A. B. C. D.6.一、单选题如图: 在中,平分,平分,且交于,若,则等于( )A.75 B.100 C.120 D.1257.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )A. B.C. D.8.-5的倒数是A. B.5 C.- D.-59.若△÷,则“△”可能是( )A. B. C. D.10.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4 D.q≥4二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是___.12.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.13.化简:÷(﹣1)=_____.14.分解因式:x2y﹣4xy+4y=_____.15.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .16.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.三、解答题(共8题,共72分)17.(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.18.(8分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.19.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.20.(8分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.(1)求k的值.(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围.21.(8分)化简:(x+7)(x-6)-(x-2)(x+1)22.(10分)化简求值:,其中x是不等式组的整数解.23.(12分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.24.解方程:(x﹣3)(x﹣2)﹣4=1.
参考答案 一、选择题(共10小题,每小题3分,共30分)1、A【解析】
根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.2、D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D3、A【解析】
根据,可得答案.【详解】根据题意,可知,可得a=2,b=1.故选A.【点睛】本题考查了估算无理数的大小,明确是解题关键.4、C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.5、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.6、B【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.7、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.8、C【解析】
若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是.故选C.9、A【解析】
直接利用分式的乘除运算法则计算得出答案.【详解】。故选:A.【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键.10、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A. 二、填空题(本大题共6个小题,每小题3分,共18分)11、2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为2+n.此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.12、【解析】
设AB=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【详解】∵△BCD∽△BAC,∴=,设AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案为【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.13、﹣.【解析】
直接利用分式的混合运算法则即可得出.【详解】原式.故答案为:.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.14、y(x-2)2【解析】
先提取公因式y,再根据完全平方公式分解即可得.【详解】原式==,故答案为.15、5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).考点:圆锥的计算16、【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是黑球的概率是:故答案为:.【点睛】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式. 三、解答题(共8题,共72分)17、证明见解析.【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.【详解】∵四边形内接于圆,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.18、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=·=当a=0时,原式==2.考点:分式的化简求值.19、 (1)8;(2)1.【解析】
(1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周长=AO+BO+AD=1.【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.20、(1)12;(2)点A不与点B重合;(3)【解析】
(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.【详解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,解得,b=, 显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有2=﹣62+2b×6,解得,b=,这时仍然是抛物线右半支经过点C,∴b的取值范围为≤b≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.21、2x-40.【解析】
原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22、当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【解析】
先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.23、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.24、x1=,x2=【解析】试题分析:方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.试题解析:解:方程化为,,,.>1..即,.
相关试卷
这是一份2023年湖南省岳阳市平江县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省岳阳市平江县中考二模数学试题(含答案),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省岳阳市平江县中考数学质检试卷(一)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
