河南省新乡市延津县重点中学2022年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列运算正确的是( )
A. B.
C. D.
2.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转( )
A.36° B.45° C.72° D.90°
3.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )
A. B.
C. D.
4.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围( )
A.a<0,b<0,c<0 B.a<0,b>0,c<0
C.a>0,b>0,c<0 D.a>0,b<0,c<0
5.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为( )
A. B. C. D.4﹣
6.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
7.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
其中合理的是( )
A.① B.② C.①② D.①③
8.如图所示的正方体的展开图是( )
A. B. C. D.
9.下列事件中是必然事件的是( )
A.早晨的太阳一定从东方升起
B.中秋节的晚上一定能看到月亮
C.打开电视机,正在播少儿节目
D.小红今年14岁,她一定是初中学生
10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
A.①② B.①③ C.①③④ D.②③④
二、填空题(共7小题,每小题3分,满分21分)
11.27的立方根为 .
12.若是关于的完全平方式,则__________.
13.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.
14.分式方程+=1的解为________.
15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为_____.
16.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.
17.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
三、解答题(共7小题,满分69分)
18.(10分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)
19.(5分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
20.(8分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C.
(1)求点 A 的坐标;
(2)结合函数的图象,求当 y<0 时,x 的取值范围.
21.(10分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)
22.(10分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
23.(12分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
24.(14分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A. ,故A选项错误,不符合题意;
B. ,故B选项错误,不符合题意;
C. ,故C选项错误,不符合题意;
D. ,正确,符合题意,
故选D.
【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
2、C
【解析】
分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
故选C.
点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
3、A
【解析】
设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴,
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选A.
4、D
【解析】
试题分析:根据二次函数的图象依次分析各项即可。
由抛物线开口向上,可得,
再由对称轴是,可得,
由图象与y轴的交点再x轴下方,可得,
故选D.
考点:本题考查的是二次函数的性质
点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。
5、D
【解析】
首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
【详解】
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
∴∠DAE=∠BEA,
∵AE是∠DEB的平分线,
∴∠BEA=∠AED,
∴∠DAE=∠AED,
∴DE=AD=4,
再Rt△DEC中,EC===,
∴BE=BC-EC=4-.
故答案选D.
【点睛】
本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.
6、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
7、B
【解析】
①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
故选B.
【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
8、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
9、A
【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
【详解】
解:B、C、D选项为不确定事件,即随机事件.故错误;
一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
故选A.
【点睛】
该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.
10、B
【解析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
【详解】
解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
故选:B.
【点睛】
本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
12、1或-1
【解析】
【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
详解:∵x2+2(m-3)x+16是关于x的完全平方式,
∴2(m-3)=±8,
解得:m=-1或1,
故答案为-1或1.
点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
13、1.
【解析】
试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).
故答案为1.
考点:平面展开最短路径问题
14、
【解析】
根据解分式方程的步骤,即可解答.
【详解】
方程两边都乘以,得:,
解得:,
检验:当时,,
所以分式方程的解为,
故答案为.
【点睛】
考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.
15、
【解析】
试题分析:根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出、、、的面积,即可得出答案
∵四边形ABCD是矩形,
∴AO=CO,BO=DO,DC∥AB,DC=AB,
∴,
∴,
∴,
∴,
,
,
∴
考点:矩形的性质;平行四边形的性质
点评:本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等
16、2.
【解析】
由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
【详解】
解:在Rt△BCD中,∵tan∠CBD==,
∴设CD=3a、BC=4a,
则BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a= 或a=-(舍),
则BD=5a=2,
故答案为2.
【点睛】
本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
17、﹣2
【解析】
∵反比例函数的图象过点A(m,3),
∴,解得.
三、解答题(共7小题,满分69分)
18、(1)CF与BD位置关系是垂直,理由见解析;(2)AB≠AC时,CF⊥BD的结论成立,理由见解析;(3)见解析
【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易证△AQD∽△DCP,再根据相似三角形的性质求解问题.②点D在线段BC延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根据相似三角形的性质求解问题.
【详解】
(1)CF与BD位置关系是垂直;
证明如下:
∵AB=AC,∠ACB=15°,
∴∠ABC=15°.
由正方形ADEF得AD=AF,
∵∠DAF=∠BAC=90°,
∴∠DAB=∠FAC,
∴△DAB≌△FAC(SAS),
∴∠ACF=∠ABD.
∴∠BCF=∠ACB+∠ACF=90°.
即CF⊥BD.
(2)AB≠AC时,CF⊥BD的结论成立.
理由是:
过点A作GA⊥AC交BC于点G,
∵∠ACB=15°,
∴∠AGD=15°,
∴AC=AG,
同理可证:△GAD≌△CAF
∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)过点A作AQ⊥BC交CB的延长线于点Q,
①点D在线段BC上运动时,
∵∠BCA=15°,可求出AQ=CQ=1.
∴DQ=1﹣x,△AQD∽△DCP,
∴,
∴,
∴.
②点D在线段BC延长线上运动时,
∵∠BCA=15°,
∴AQ=CQ=1,
∴DQ=1+x.
过A作AQ⊥BC,
∴∠Q=∠FAD=90°,
∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
∴∠ADQ=∠AFC′,
则△AQD∽△AC′F.
∴CF⊥BD,
∴△AQD∽△DCP,
∴,
∴,
∴.
【点睛】
综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.
19、30.3米.
【解析】
试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
试题解析:过点D作DE⊥AB于点E,
在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
∴AB=AE+BE≈23.1+7.2=30.3米.
20、(1);(2)
【解析】
(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;
(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出.
【详解】
解:(1)当时,函数的值为-2,
∴点的坐标为
∵四边形为矩形,
解方程,得.
∴点的坐标为.
∴点的坐标为.
(2)解方程,得.
由图象可知,当时,的取值范围是.
【点睛】
本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.
21、
【解析】
设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.
【详解】
解:设灯柱的长为米,过点作于点过点做于点
∴四边形为矩形,
∵∴
又∵∴
在中,
∴
∴又∴
在中,
解得,(米)
∴灯柱的高为米.
22、(1)3,补图详见解析;(2)
【解析】
(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
【详解】
由扇形图可以看到发箴言三条的有3名学生且占,
故该班团员人数为:
(人),
则发4条箴言的人数为:(人),
所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).
(2)画树形图如下:
由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
【点睛】
此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
23、 (1)35元;(2)30元.
【解析】
(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
(2)令w=2000,然后解一元二次方程,从而求出销售单价.
【详解】
解:(1)由题意,得:
W=(x-20)×y
=(x-20)(-10x+1)
=-10x2+700x-10000
=-10(x-35)2+2250
当x=35时,W取得最大值,最大值为2250,
答:当销售单价定为35元时,每月可获得最大利润为2250元;
(2)由题意,得:,
解得:,,
销售单价不得高于32元,
销售单价应定为30元.
答:李明想要每月获得2000元的利润,销售单价应定为30元.
【点睛】
本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
24、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
2023年河南省新乡市延津县中考数学三模试卷(含解析): 这是一份2023年河南省新乡市延津县中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年河南省新乡市延津县中考三模数学试题(含答案): 这是一份2023年河南省新乡市延津县中考三模数学试题(含答案),共11页。试卷主要包含了下列运算正确的是,如图,于点,,一元二次方程的根的情况是,如图等内容,欢迎下载使用。
2022年河南省周口川汇区重点中学中考适应性考试数学试题含解析: 这是一份2022年河南省周口川汇区重点中学中考适应性考试数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,某市2017年国内生产总值,关于的方程有实数根,则满足等内容,欢迎下载使用。

