|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析01
    2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析02
    2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析

    展开
    这是一份2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是,我们知道等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )

    A.8 B.8 C.4 D.6
    2.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为(  )
    A. B. C. D.
    3.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    4.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为(  )
    A.152元 B.156元 C.160元 D.190元
    5.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
    A. B.1 C. D.
    6.已知a,b为两个连续的整数,且a< A.7 B.8 C.9 D.10
    7.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).

    A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
    8.-2的倒数是( )
    A.-2 B. C. D.2
    9.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为(  )

    A.13 B.15 C.17 D.19
    10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为(  )

    A.(,2) B.(4,1) C.(4,) D.(4,)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
    12.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.
    13.分解因式6xy2-9x2y-y3 = _____________.
    14.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.

    15.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).

    16.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.

    三、解答题(共8题,共72分)
    17.(8分)问题探究
    (1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
    (2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;

    (3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.

    图3
    18.(8分)某水果批发市场香蕉的价格如下表
    购买香蕉数(千克)
    不超过20千克
    20千克以上但不超过40千克
    40千克以上
    每千克的价格
    6元
    5元
    4元
    张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
    19.(8分)如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.求证:DE=CE. 若∠CDE=35°,求∠A 的度数.

    20.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.

    21.(8分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.

    22.(10分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
    (1)如图1,线段EH、CH、AE之间的数量关系是   ;
    (2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.

    23.(12分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.

    24.计算:()﹣2﹣+(﹣2)0+|2﹣|



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
    详解: 如图,连接OB,

    ∵BE=BF,OE=OF,
    ∴BO⊥EF,
    ∴在Rt△BEO中,∠BEF+∠ABO=90°,
    由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
    ∴∠BAC=∠ABO,
    又∵∠BEF=2∠BAC,
    即2∠BAC+∠BAC=90°,
    解得∠BAC=30°,
    ∴∠FCA=30°,
    ∴∠FBC=30°,
    ∵FC=2,
    ∴BC=2,
    ∴AC=2BC=4,
    ∴AB===6,
    故选D.
    点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
    2、B
    【解析】
    按照解一元一次不等式的步骤求解即可.
    【详解】
    去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.
    【点睛】
    数形结合思想是初中常用的方法之一.
    3、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    4、C
    【解析】
    【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
    【详解】设进价为x元,依题意得
    240×0.8-x=20x℅
    解得x=160
    所以,进价为160元.
    故选C
    【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
    5、A
    【解析】
    【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
    【详解】x(x+1)+ax=0,
    x2+(a+1)x=0,
    由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
    解得:a1=a2=-1,
    故选A.
    【点睛】本题考查一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.
    6、A
    【解析】
    ∵9<11<16,
    ∴,
    即,
    ∵a,b为两个连续的整数,且,
    ∴a=3,b=4,
    ∴a+b=7,
    故选A.
    7、C
    【解析】
    试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
    故选C
    考点:1、方差;2、平均数;3、中位数;4、众数
    8、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    9、B
    【解析】
    ∵DE垂直平分AC,
    ∴AD=CD,AC=2EC=8,
    ∵C△ABC=AC+BC+AB=23,
    ∴AB+BC=23-8=15,
    ∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.
    故选B.
    10、D
    【解析】
    由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
    【详解】
    解:∵AD′=AD=4,
    AO=AB=1,
    ∴OD′==2,
    ∵C′D′=4,C′D′∥AB,
    ∴C′(4,2),
    故选:D.
    【点睛】
    本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、20000
    【解析】
    试题分析:1000÷=20000(条).
    考点:用样本估计总体.
    12、2
    【解析】
    根据定义即可求出答案.
    【详解】
    由题意可知:原式=1-i2=1-(-1)=2
    故答案为2
    【点睛】
    本题考查新定义型运算,解题的关键是正确理解新定义.
    13、-y(3x-y)2
    【解析】
    先提公因式-y,然后再利用完全平方公式进行分解即可得.
    【详解】
    6xy2-9x2y-y3
    =-y(9x2-6xy+y2)
    =-y(3x-y)2,
    故答案为:-y(3x-y)2.
    【点睛】
    本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.
    14、12.
    【解析】
    设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.
    【详解】
    设AD=a,则AB=OC=2a,
    ∵点D在反比例函数y=的图象上,
    ∴D(a,),
    ∴OA=,
    过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,

    ∵△OEC的面积为12,OC=2a,
    ∴EN=,
    ∴EM=MN-EN=-=;
    设ON=x,则NC=BM=2a-x,
    ∵AB∥OC,
    ∴△BME∽△ONE,
    ∴,
    即,
    解得x=,
    ∴E(,),
    ∵点E在在反比例函数y=的图象上,
    ∴·=k,
    解得k=,
    ∵k>0,
    ∴k=12.
    故答案为:12.
    【点睛】
    本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.
    15、<
    【解析】
    由抛物线开口向下,则a<0,抛物线与y轴交于y轴负半轴,则c<0,对称轴在y轴左侧,则b<0,因此可判断a+b+2c与0的大小
    【详解】
    ∵抛物线开口向下
    ∴a<0
    ∵抛物线与y轴交于y轴负半轴,
    ∴c<0
    ∵对称轴在y轴左侧
    ∴﹣<0
    ∴b<0
    ∴a+b+2c<0
    故答案为<.
    【点睛】
    本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.
    16、(2,)
    【解析】
    过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).
    故答案为(2,).


    三、解答题(共8题,共72分)
    17、(1);(2);(3)+.
    【解析】
    (1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
    (2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
    (3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
    【详解】
    (1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
    ∴BC=3,CE=,∠ACB=∠DCE=45°,
    ∴∠BCE=∠ACD,
    ∵==,=,
    ∴=,∠BCE=∠ACD,
    ∴△ACD∽△BCE,
    ∴=;
    (2)∵∠ACB=90°,∠B=30°,BC=4,
    ∴AC=,AB=2AC=,
    ∵∠QAP=∠QCP=90°,
    ∴点A,点Q,点C,点P四点共圆,
    ∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
    ∴△ABC∽△PQC,
    ∴,
    ∴PQ=×QC=QC,
    ∴当QC的长度最小时,PQ的长度最小,
    即当QC⊥AB时,PQ的值最小,
    此时QC=2,PQ的最小值为;
    (3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,

    ∵∠ADC=90°,AD=CD,
    ∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
    ∴△ABC∽△DEC,
    ∴,
    ∵∠DCE=∠ACB,
    ∴∠BCE=∠ACD,
    ∴△BCE∽△ACD,
    ∴∠BEC=∠ADC=90°,
    ∴CE=BC=2,
    ∵点F是EC中点,
    ∴DF=EF=CE=,
    ∴BF==,
    ∴BD≤DF+BF=+
    【点睛】
    本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
    18、第一次买14千克香蕉,第二次买36千克香蕉
    【解析】
    本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
    【详解】
    设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
    则①当0<x≤20,y≤40,则题意可得

    解得.
    ②当0<x≤20,y>40时,由题意可得

    解得.(不合题意,舍去)
    ③当20<x<3时,则3<y<2,此时张强用去的款项为
    5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
    ④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
    答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
    【点睛】
    本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.
    19、 (1)见解析;(2) 40°.
    【解析】
    (1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;
    (2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.
    【详解】
    (1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.
    ∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.
    (2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.
    ∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.
    【点睛】
    本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.
    20、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
    21、这栋楼的高度BC是米.
    【解析】
    试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.
    试题解析:
    解:∵°,°,°,AD=100,

    ∴在Rt中,,
    在Rt中,.
    ∴.
    点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.
    22、 (1) EH2+CH2=AE2;(2)见解析.
    【解析】
    分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
    (2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
    详解:
    (1)EH2+CH2=AE2,
    如图1,过E作EM⊥AD于M,
    ∵四边形ABCD是菱形,
    ∴AD=CD,∠ADE=∠CDE,
    ∵EH⊥CD,
    ∴∠DME=∠DHE=90°,
    在△DME与△DHE中,

    ∴△DME≌△DHE,
    ∴EM=EH,DM=DH,
    ∴AM=CH,
    在Rt△AME中,AE2=AM2+EM2,
    ∴AE2=EH2+CH2;
    故答案为:EH2+CH2=AE2;
    (2)如图2,
    ∵菱形ABCD,∠ADC=60°,
    ∴∠BDC=∠BDA=30°,DA=DC,
    ∵EH⊥CD,
    ∴∠DEH=60°,
    在CH上截取HG,使HG=EH,
    ∵DH⊥EG,∴ED=DG,
    又∵∠DEG=60°,
    ∴△DEG是等边三角形,
    ∴∠EDG=60°,
    ∵∠EDG=∠ADC=60°,
    ∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
    ∴∠ADE=∠CDG,
    在△DAE与△DCG中,

    ∴△DAE≌△DCG,
    ∴AE=GC,
    ∵CH=CG+GH,
    ∴CH=AE+EH.

    点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
    23、(1)详见解析;(2)1+
    【解析】
    (1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
    【详解】
    (1)证明:连结.如图,
    与相切于点D,


    是的直径,





    (2)解:在中,
    .

    【点睛】
    此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
    24、2
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.
    【详解】
    解:原式=4﹣3+1+2﹣2=2.
    【点睛】
    本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.

    相关试卷

    精品解析:2023年江西省吉安市青原区思源实验学校中考数学模拟试卷: 这是一份精品解析:2023年江西省吉安市青原区思源实验学校中考数学模拟试卷,文件包含精品解析2023年江西省吉安市青原区思源实验学校中考数学模拟试卷解析版docx、精品解析2023年江西省吉安市青原区思源实验学校中考数学模拟试卷原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析: 这是一份江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了化简,的相反数是等内容,欢迎下载使用。

    江西省吉安市七校联盟重点中学2022年中考数学模拟预测题含解析: 这是一份江西省吉安市七校联盟重点中学2022年中考数学模拟预测题含解析,共24页。试卷主要包含了﹣2018的绝对值是,cs30°的相反数是,要使式子有意义,的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map