


2022年广西南宁市武鸣区中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )
A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚
2.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )
A. B.
C. D.
3.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )
A. B. C.6 D.4
4.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
5.在下列交通标志中,是中心对称图形的是( )
A. B.
C. D.
6.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )
A. B. C. D.
7.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为( )
A. B. C. D.
8.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )
A. B. C. D.
9.下列运算正确的是( )
A.a2•a3=a6 B.()﹣1=﹣2 C. =±4 D.|﹣6|=6
10.的相反数是
A.4 B. C. D.
11.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
12.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有( )
A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
14.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为_____.
15.已知xy=3,那么的值为______ .
16.关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是 .
17.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.
18.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?
20.(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.
(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
21.(6分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是 .
22.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
23.(8分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
24.(10分)在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点.
(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;
(2)若,
①如图2,当时,求的值;
②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为 .
25.(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
26.(12分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
27.(12分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:
(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;请补全扇形统计图;
(3)“自行乘车”对应扇形的圆心角的度数是 度;
(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
2、C
【解析】
根据左视图是从物体的左面看得到的视图解答即可.
【详解】
解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的
长方形,
故选C.
【点睛】
本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.
3、C
【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
4、B
【解析】
试题分析:分a>0和a<0两种情况讨论:
当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;
当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.
故选B.
考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.
5、C
【解析】
解:A图形不是中心对称图形;
B不是中心对称图形;
C是中心对称图形,也是轴对称图形;
D是轴对称图形;不是中心对称图形
故选C
6、D
【解析】
由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
【详解】
因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
故选D.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
7、A
【解析】
连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
【详解】
连接BD,
∵四边形ABCD为矩形,
∴BD过圆心O,
∵∠BDC=∠BPC(圆周角定理)
∴cos∠BDC=cos∠BPC
∵BD为直径,
∴∠BCD=90°,
∵=,
∴设DC为x,
则BC为2x,
∴BD===x,
∴cos∠BDC===,
∵cos∠BDC=cos∠BPC,
∴cos∠BPC=.
故答案选A.
【点睛】
本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
8、B
【解析】
根据折叠前后对应角相等可知.
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
9、D
【解析】
运用正确的运算法则即可得出答案.
【详解】
A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
【点睛】
本题考查了四则运算法则,熟悉掌握是解决本题的关键.
10、A
【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.
【详解】
-1的相反数为1,则1的绝对值是1.
故选A.
【点睛】
本题考查了绝对值和相反数,正确把握相关定义是解题的关键.
11、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
12、D
【解析】
当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).
故答案是:.
14、2
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.
【详解】
∵点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),
∴a+b=-3,-1-b=1;
解得a=-1,b=-2,
∴ab=2.
故答案为2.
【点睛】
本题考查了关于x轴,y轴对称的点的坐标,解题的关键是熟练的掌握关于y轴对称的点的坐标的性质.
15、±2
【解析】
分析:先化简,再分同正或同负两种情况作答.
详解:因为xy=3,所以x、y同号,
于是原式==,
当x>0,y>0时,原式==2;
当x<0,y<0时,原式==−2
故原式=±2.
点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.
16、k<1且k≠1
【解析】
试题分析:根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
解:∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
解得k<1且k≠1.
∴k的取值范围为k<1且k≠1.
故答案为k<1且k≠1.
考点:根的判别式;一元二次方程的定义.
17、(3,2).
【解析】
过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.
【详解】
过点P作PD⊥x轴于点D,连接OP,
∵A(6,0),PD⊥OA,
∴OD=OA=3,
在Rt△OPD中 ∵OP= OD=3,
∴PD=2
∴P(3,2) .
故答案为(3,2).
【点睛】
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
18、
【解析】
E、F分别是BC、AC的中点.
,
∠CAB=26°
又
∠CAD =26°
!
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
【详解】
(1)(300﹣100)÷20=10(米/分钟),
b=15÷1×2=30,
故答案为10,30;
(2)当0≤x≤2时,y=15x;
当x≥2时,y=30+10×3(x﹣2)=30x﹣30,
当y=30x﹣30=300时,x=11,
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;
(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
当10x+100﹣(30x﹣30)=50时,解得:x=4,
当30x﹣30﹣(10x+100)=50时,解得:x=9,
当300﹣(10x+100)=50时,解得:x=15,
答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
【点睛】
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
20、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
【详解】
(Ⅰ)设OD为x,
∵点A(3,0),点B(0,),
∴AO=3,BO=
∴AB=6
∵折叠
∴BD=DA
在Rt△ADO中,OA1+OD1=DA1.
∴9+OD1=(﹣OD)1.
∴OD=
∴D(0,)
(Ⅱ)∵折叠
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=11﹣6
∴D(11﹣6,11﹣18)
(Ⅲ)如图:过点C作CE⊥AO于E
∵CE⊥AO
∴OE=1,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=1,CE=
∵BC=AB﹣AC
∴BC=6﹣1=4
若点B'落在A点右边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=1+
∴B'(1+,0)
若点B'落在A点左边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣1
∴B'(1﹣,0)
综上所述:B'(1+,0),(1﹣,0)
【点睛】
本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
21、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
【解析】
(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
【详解】
(1)如图所示,△A1B1C1即为所求.
A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
(2)如图所示,△CC1C2的面积是2×1=1.
故答案为:1.
【点睛】
本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
22、(1)C(2)(3)b<﹣且b≠﹣2或b>
【解析】
(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
【详解】
(1)点B关于直线x=4的对称点为B′(10,﹣),
∴直线AB′解析式为:y=﹣,
当x=4时,y=,
故答案为:C
(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
作BH⊥l于点H
∵点A和A′关于直线l对称
∴∠APG=∠A′PG
∵∠BPH=∠A′PG
∴∠APG=∠BPH
∵∠AGP=∠BHP=90°
∴△AGP∽△BHP
∴,即,
∴mn=2,即m=,
∵∠APB=α,AP=AP′,
∴∠A=∠A′=,
在Rt△AGP中,tan
(3)如图,当点P位于直线AB的右下方,∠APB=60°时,
点P在以AB为弦,所对圆周为60°,且圆心在AB下方
若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
由对称性可知:∠APQ=∠A′PQ,
又∠APB=60°
∴∠APQ=∠A′PQ=60°
∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
∴∠BAQ=60°=∠AQB=∠ABQ
∴△ABQ是等边三角形
∵线段AB为定线段
∴点Q为定点
若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
∴直线y=ax+b(a≠0)过定点Q
连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
∵A(2,),B(﹣2,﹣)
∴OA=OB=
∵△ABQ是等边三角形
∴∠AOQ=∠BOQ=90°,OQ=,
∴∠AOM+∠NOD=90°
又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
∵∠AMO=∠ONQ=90°
∴△AMO∽△ONQ
∴,
∴,
∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
设直线BQ解析式为y=kx+b
将B、Q坐标代入得
,
解得
,
∴直线BQ的解析式为:y=﹣,
设直线AQ的解析式为:y=mx+n,
将A、Q两点代入,
解得 ,
∴直线AQ的解析式为:y=﹣3,
若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
又∵y=ax+b(a≠0),且点P位于AB右下方,
∴b<﹣ 且b≠﹣2或b>.
【点睛】
本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
23、(1)P(抽到数字为2)=;(2)不公平,理由见解析.
【解析】
试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.
试题解析: (1)P=;
(2)由题意画出树状图如下:
一共有6种情况,
甲获胜的情况有4种,P=,
乙获胜的情况有2种,P=,
所以,这样的游戏规则对甲乙双方不公平.
考点:游戏公平性;列表法与树状图法.
24、(1)作图见解析,,;(2)①k=6;②.
【解析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;
(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);
①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;
②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.
【详解】
解:(1)点 , ,
,,
如图1,
由旋转知,,,,
点在轴正半轴上,点在轴负半轴上,
,;
(2)过点作轴于,过点作轴于,过点作于,
,,
,
,
,
,
,
,
,
,
,,,
,,
,
设,
,
,,
点,在双曲线上,
,
(Ⅰ)
①,
,
,
,
(Ⅱ),
联立(Ⅰ)(Ⅱ)解得:,,
;
②如图3,
,,
,,
,
,
直线的解析式为(Ⅲ),
双曲线(Ⅳ),
联立(Ⅲ)(Ⅳ)得:,
即:,
△,
直线与双曲线有唯一公共点,
△,
△,
(舍或,
,
.
故答案为:.
【点睛】
此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键.
25、29.8米.
【解析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
【详解】
解:如图,作,,
由题意得:
米,
米,
则米,
答:这架无人飞机的飞行高度为米.
【点睛】
此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
26、(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为元,
方案二总费用为元;②方案一更合算.
【解析】
(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.
【详解】
(1)设文具袋的单价为x元,圆规单价为y元。
由题意得解得
答:文具袋的单价为15元,圆规单价为3元。
(2)①设圆规m个,则方案一总费用为:元
方案二总费用元
故答案为:元;
②买圆规100个时,方案一总费用:元,
方案二总费用:元,
∴方案一更合算。
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
27、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.
【解析】
(1)本次抽查的学生人数:18÷15%=120(人);
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).
【详解】
解:(1)本次抽查的学生人数:18÷15%=120(人),
答:本次抽查的学生人数是120人;
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),
补全条形统计图如下:
“结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,
故答案为126;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),
答:该校“家人接送”上学的学生约有500人.
【点睛】
本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.
广西南宁市武鸣区2023年中考数学适应性模拟试题含解析: 这是一份广西南宁市武鸣区2023年中考数学适应性模拟试题含解析,共16页。
2023年广西南宁市武鸣区中考数学二模试卷(含解析): 这是一份2023年广西南宁市武鸣区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广西南宁市武鸣区中考数学二模试卷(含解析): 这是一份2023年广西南宁市武鸣区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。