2022届浙江省绍兴市上虞实验中学中考数学仿真试卷含解析
展开
这是一份2022届浙江省绍兴市上虞实验中学中考数学仿真试卷含解析,共22页。试卷主要包含了如图,能判定EB∥AC的条件是等内容,欢迎下载使用。
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A.B.
C.D.
2.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为( )
A.1B.2C.3D.4
3.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( )
A.B.C.D.1
4.如图,能判定EB∥AC的条件是( )
A.∠C=∠ABEB.∠A=∠EBD
C.∠A=∠ABED.∠C=∠ABC
5.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为( )
A.9B.10C.12D.14
6.在下列二次函数中,其图象的对称轴为的是
A.B.C.D.
7.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )
A.27B.36C.27或36D.18
8.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是( )
A.B.C.D.
9.下列关于x的方程一定有实数解的是( )
A.B.
C.D.
10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A.B. C.D.12
11.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%xB.(1+40%)(1﹣30%)x
C.D.
12.如图图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.的算术平方根是_______.
14.方程组的解是________.
15.分解因式=________,=__________.
16.已知、为两个连续的整数,且,则=________.
17.不等式组有2个整数解,则m的取值范围是_____.
18.若-2amb4与5a2bn+7是同类项,则m+n= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.
(1)求证:;
(2)若,求tan∠CED的值.
20.(6分)解不等式组
21.(6分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
22.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.
(1)求证;∠BDC=∠A.
(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.
23.(8分)先化简代数式,再从﹣1,0,3中选择一个合适的a的值代入求值.
24.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
25.(10分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
(1)图①中,点C在⊙O上;
(2)图②中,点C在⊙O内;
26.(12分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
说明:补全表格上相关数值保留一位小数
建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.
27.(12分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查 名学生;扇形统计图中C所对应扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
2、C
【解析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
【详解】
去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
方程①的根的情况有两种:
(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
解得a=.
当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
(i)当x=1时,代入①式得3﹣a=1,即a=3.
当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
x1是增根,故x=﹣为方程的唯一实根;
因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
故选C.
【点睛】
考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
3、C
【解析】
延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
【详解】
解:延长BC′交AB′于D,连接BB',如图,
在Rt△AC′B′中,AB′=AC′=2,
∵BC′垂直平分AB′,
∴C′D=AB=1,
∵BD为等边三角形△ABB′的高,
∴BD=AB′=,
∴BC′=BD-C′D=-1.
故本题选择C.
【点睛】
熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.
4、C
【解析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;
B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;
C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;
D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.
故选C.
【点睛】
本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
5、A
【解析】
利用平行四边形的性质即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=3,OD=OB==2,OA=OC=4,
∴△OBC的周长=3+2+4=9,
故选:A.
【点睛】
题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
6、A
【解析】
y=(x+2)2的对称轴为x=–2,A正确;
y=2x2–2的对称轴为x=0,B错误;
y=–2x2–2的对称轴为x=0,C错误;
y=2(x–2)2的对称轴为x=2,D错误.故选A.
1.
7、B
【解析】
试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
试题解析:分两种情况:
(3)当其他两条边中有一个为3时,将x=3代入原方程,
得:33-33×3+k=0
解得:k=37
将k=37代入原方程,
得:x3-33x+37=0
解得x=3或9
3,3,9不能组成三角形,不符合题意舍去;
(3)当3为底时,则其他两边相等,即△=0,
此时:344-4k=0
解得:k=3
将k=3代入原方程,
得:x3-33x+3=0
解得:x=6
3,6,6能够组成三角形,符合题意.
故k的值为3.
故选B.
考点:3.等腰三角形的性质;3.一元二次方程的解.
8、A
【解析】
一一对应即可.
【详解】
最左边有一个,中间有两个,最右边有三个,所以选A.
【点睛】
理解立体几何的概念是解题的关键.
9、A
【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
【详解】
A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.
【点睛】
本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
10、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
11、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
12、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A不正确;
B、既是轴对称图形,又是中心对称图形,故B正确;
C、是轴对称图形,不是中心对称图形,故C不正确;
D、既不是轴对称图形,也不是中心对称图形,故D不正确.
故选B.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3
【解析】
根据算术平方根定义,先化简,再求的算术平方根.
【详解】
因为=9
所以的算术平方根是3
故答案为3
【点睛】
此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.
14、
【解析】
利用加减消元法进行消元求解即可
【详解】
解:
由①+②,得
3x=6
x=2
把x=2代入①,得
2+3y=5
y=1
所以原方程组的解为:
故答案为:
【点睛】
本题考查了二元一次方程组的解法,用适当的方法解二元一次方程组是解题的关键.
15、
【解析】
此题考查因式分解
答案
点评:利用提公因式、平方差公式、完全平方公式分解因式
16、11
【解析】
根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.
【详解】
∵a<<b,a、b为两个连续的整数,
∴,
∴a=5,b=6,
∴a+b=11.
故答案为11.
【点睛】
本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.
17、1<m≤2
【解析】
首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
【详解】
不等式组有个整数解,
其整数解有、这个,
.
故答案为:.
【点睛】
此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
18、-1.
【解析】
试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
试题解析:由-2amb4与5a2bn+7是同类项,得
,
解得.
∴m+n=-1.
考点:同类项.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)tan∠CED=
【解析】
(1)欲证明,只要证明即可;
(2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.
【详解】
(1)证明:如下图,连接AE,
∵AD是直径,
∴,
∴DC⊥AB,
∵AC=CB,
∴DA=DB,
∴∠CDA=∠CDB,
∵,,
∴∠BDC=∠EAC,
∵∠AEC=∠ADC,
∴∠EAC=∠AEC,
∴;
(2)解:如下图,连接OC,
∵AO=OD,AC=CB,
∴OC∥BD,
∴,
∴,
设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,
∵∠BAD=∠BEC,∠B=∠B,
∴,
∴BD•BE=BC•BA,设AC=BC=x,
则有,
∴,
∴,
∴,
∴.
【点睛】
本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.
20、﹣1≤x<1.
【解析】
分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解不等式2x+1≥﹣1,得:x≥﹣1,
解不等式x+1>4(x﹣2),得:x<1,
则不等式组的解集为﹣1≤x<1.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
21、(1)证明:∵ABCD是平行四边形
∴AB=CD
AB∥CD
∴∠ABE=∠CDF
又∵AE⊥BD,CF⊥BD
∴∠AEB=∠CFD=
∴△ABE≌△CDF
∴BE=DF
【解析】
证明:在□ABCD中
∵AB∥CD
∴∠ABE=∠CDF…………………………………………………………4分
∵AE⊥BD CF⊥BD
∴∠AEB=∠CFD=900……………………………………………………5分
∵AB=CD
∴△ABE≌△CDF…………………………………………………………6分
∴BE=DF
22、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
23、,1
【解析】
先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a=3,计算即可得到答案.
【详解】
原式===,
当a=3时(a≠﹣1,0),原式=1.
【点睛】
本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.
24、(1)1000 (2)200 (3)54° (4)4000人
【解析】
试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
(3)利用360°乘以对应的比例即可求解;
(4)利用20000除以调查的总人数,然后乘以200即可求解.
试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
(2)剩少量的人数是1000-400-250-150=200(名),
;
(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
(4)×200=4000(人).
答:校20000名学生一餐浪费的食物可供4000人食用一餐.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、图形见解析
【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
试题解析:
如图①∠DBC就是所求的角;
如图②∠FBE就是所求的角
26、(1)1.1;(2)见解析;(3).
【解析】
(1)(2)需要认真按题目要求测量,描点作图;
(3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
【详解】
根据题意测量约
故应填:
根据题意画图:
当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.
故答案为(1)1.1;(2)见解析;(3)1.7.
【点睛】
本题考查函数作图和函数图象实际意义的理解,在中,考查学生由数量关系得到函数关系的转化思想.
27、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
【解析】
【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
(3)用“非常了解”所占的比例乘以800即可求得;
(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
【详解】(1)本次调查的学生总人数为24÷40%=60人,
扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
故答案为60、90°;
(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
补全条形图如下:
(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
(4)画树状图为:
共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.
0
1
2
3
4
5
___
0
0
相关试卷
这是一份2023年浙江省绍兴市上虞区一模数学试题(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省绍兴市上虞区中考数学适应性试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省绍兴市上虞区中考数学模拟试卷(4月份)(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

