2022届孝感市八校联谊重点达标名校中考数学模拟精编试卷含解析
展开
这是一份2022届孝感市八校联谊重点达标名校中考数学模拟精编试卷含解析,共23页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在实数,,,中,其中最小的实数是( )
A. B. C. D.
2.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有( )
A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890
C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=10890
3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
4.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )
A.70° B.50° C.40° D.35°
5.下列调查中适宜采用抽样方式的是( )
A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况
C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命
6.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )
A.105° B.110° C.115° D.120°
7.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30° B.15° C.18° D.20°
8.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )
A. B. C. D.
9.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于( )
A. B. C. D.
10.下列四个图形中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
11.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为( )
A.2 B.4 C.4 D.8
12.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位 B.将l1向右平移2个单位
C.将l1向上平移2个单位 D.将l1向下平移2个单位
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.
14.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.
15.一元二次方程有两个不相等的实数根,则的取值范围是________.
16.化简:=_____.
17.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“0的解集是___________________
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
20.(6分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
21.(6分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
22.(8分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
(1)当为t何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.
23.(8分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:
(1)这两种书的单价.
(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?
24.(10分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求过A、B、C三点的抛物线解析式;
(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.
图1 备用图
25.(10分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
26.(12分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
27.(12分)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.
【详解】
解:∵0,-2,1,中,-2<0<1<,
∴其中最小的实数为-2;
故选:B.
【点睛】
本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.
2、C
【解析】
设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.
【详解】
解:设房价比定价180元增加x元,
根据题意,得(180+x﹣20)(50﹣)=1.
故选:C.
【点睛】
此题考查一元二次方程的应用问题,主要在于找到等量关系求解.
3、B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
4、B
【解析】
分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
详解:∵OE是∠BOC的平分线,∠BOC=80°,
∴∠COE=∠BOC=×80°=40°,
∵OD⊥OE
∴∠DOE=90°,
∴∠DOC=∠DOE-∠COE=90°-40°=50°,
∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
故选B.
点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
5、D
【解析】
根据全面调查与抽样调查的特点对各选项进行判断.
【详解】
解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.
故选:D.
【点睛】
本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
6、C
【解析】
如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
【详解】
如图,对图形进行点标注.
∵直线a∥b,
∴∠AMO=∠2;
∵∠ANM=∠1,而∠1=55°,
∴∠ANM=55°,
∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
故选C.
【点睛】
本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
7、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
8、A
【解析】
试题分析:从上面看是一行3个正方形.
故选A
考点:三视图
9、B
【解析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
【详解】
如图,过点P作PE⊥OA于点E,
∵OP是∠AOB的平分线,
∴PE=PM,
∵PN∥OB,
∴∠POM=∠OPN,
∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
∴=.
故选:B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
10、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
11、C
【解析】
根据题意可以求得点O'的坐标,从而可以求得k的值.
【详解】
∵点B的坐标为(0,4),
∴OB=4,
作O′C⊥OB于点C,
∵△ABO绕点B逆时针旋转60°后得到△A'BO',
∴O′B=OB=4,
∴O′C=4×sin60°=2,BC=4×cos60°=2,
∴OC=2,
∴点O′的坐标为:(2,2),
∵函数y=(x>0)的图象经过点O',
∴2=,得k=4,
故选C.
【点睛】
本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
12、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.
【详解】
∵双曲线y=与正比例函数y=kx的图象交于A,B两点,
∴点A与点B关于原点对称,∴S△BOC=S△AOC,
∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.
故答案为1.
14、1.
【解析】
试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.
考点:①平行四边形的性质;②圆内接四边形的性质.
15、且
【解析】
根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.
【详解】
由题意可得,1−k≠0,△=4+4(1−k)>0,
∴k<2且k≠1.
故答案为k<2且k≠1.
【点睛】
本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.
16、
【解析】
先算除法,再算减法,注意把分式的分子分母分解因式
【详解】
原式=
=
=
【点睛】
此题考查分式的混合运算,掌握运算法则是解题关键
17、<
【解析】
把点(-1,a)、(-2,b)分别代入抛物线,则有:
a=1-2-3=-4,b=4-4-3=-3,
-4
相关试卷
这是一份孝感市八校联谊2022年中考数学模拟预测试卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。
这是一份2022届孝感市八校联谊重点达标名校中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

