


“合肥十校”联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.计算:的结果是( )
A. B.. C. D.
2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A. B. C. D.12
3.在△ABC中,∠C=90°,,那么∠B的度数为( )
A.60° B.45° C.30° D.30°或60°
4.下列运算中,正确的是( )
A.(a3)2=a5 B.(﹣x)2÷x=﹣x
C.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x6
5.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
6.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
7.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
8.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
9.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是( )
A.m<n B.m≤n C.m>n D.m≥n
10.下列图案中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
11.cos60°的值等于( )
A.1 B. C. D.
12.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为( )
A.﹣3 B.﹣1 C.1 D.3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
14.点A(-2,1)在第_______象限.
15.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.
16.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.
17.计算:.
18.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
(1)直接写出AB所在直线的解析式、点C的坐标、a的值;
(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.
20.(6分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:
(1)在这次研究中,一共调查了 学生,并请补全折线统计图;
(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?
21.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
22.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
23.(8分)列方程或方程组解应用题:
为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
24.(10分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
25.(10分)计算:×(2﹣)﹣÷+.
26.(12分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度
百分比
A非常了解
10%
B比较了解
15%
C基本了解
35%
D不了解
n%
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
27.(12分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:原式=
=
=
故选;B
【点睛】
本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
2、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
3、C
【解析】
根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
【详解】
解:∵,
∴∠A=60°.
∵∠C=90°,
∴∠B=90°-60°=30°.
点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
4、D
【解析】
根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
【详解】
∵(a3)2=a6,
∴选项A不符合题意;
∵(-x)2÷x=x,
∴选项B不符合题意;
∵a3(-a)2=a5,
∴选项C不符合题意;
∵(-2x2)3=-8x6,
∴选项D符合题意.
故选D.
【点睛】
此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.
5、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
6、C
【解析】
Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
【详解】
∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
∴DO=BC=2,CO=3,
∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
故选:C.
【点睛】
本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
7、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
8、D
【解析】
直接利用配方法将原式变形,进而利用平移规律得出答案.
【详解】
y=x2﹣6x+21
=(x2﹣12x)+21
=[(x﹣6)2﹣16]+21
=(x﹣6)2+1,
故y=(x﹣6)2+1,向左平移2个单位后,
得到新抛物线的解析式为:y=(x﹣4)2+1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
9、C
【解析】
分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
详解:∵
∴此抛物线对称轴为
∵抛物线与x轴交于两点,
∴当时,得
∵
∴
∴
故选C.
点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
10、B
【解析】
根据轴对称图形与中心对称图形的概念解答.
【详解】
A.不是轴对称图形,是中心对称图形;
B.是轴对称图形,是中心对称图形;
C.不是轴对称图形,也不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
11、A
【解析】
根据特殊角的三角函数值直接得出结果.
【详解】
解:cos60°=
故选A.
【点睛】
识记特殊角的三角函数值是解题的关键.
12、D
【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.
【详解】
解:∵2x2+1x﹣1=1,
∴2x2+1x=2,
则4x2+6x﹣1=2(2x2+1x)﹣1
=2×2﹣1
=4﹣1
=1.
故本题答案为:D.
【点睛】
本题主要考查代数式的求值,运用整体代入的思想是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、5
【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
【详解】
如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.
【点睛】
本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
14、二
【解析】
根据点在第二象限的坐标特点解答即可.
【详解】
∵点A的横坐标-2<0,纵坐标1>0,
∴点A在第二象限内.
故答案为:二.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
15、
【解析】
连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
【详解】
连接AG,延长AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案为.
【点睛】
本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
16、20%.
【解析】
试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.
试题解析:依题意,有:100(1+x)2=144,
1+x=±1.2,
解得:x=20%或-2.2(舍去).
考点:一元二次方程的应用.
17、
【解析】
此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
.
【点睛】
此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.
18、1.
【解析】
试题分析:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO=×50°=1°.
考点:菱形的性质.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
【解析】
(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
【详解】
解:(1)设直线AB解析式为y=kx+b,
把A(﹣4,0),B(0,﹣2)代入得:,
解得:,
∴直线AB的解析式为y=﹣x﹣2,
根据题意得:点C的坐标为(2,2),
把C(2,2)代入二次函数解析式得:a=;
(2)连接BQ,
则易得PQ∥OB,且PQ=OB,
∴四边形PQBO是平行四边形,
∴OP=BQ,
∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
∵直线AB的解析式为y=﹣x﹣2,
∴可设此时点Q的坐标为(t,﹣t﹣2),
于是,此时点P的坐标为(t,﹣t),
∵点P在抛物线y=x2上,
∴﹣t=t2,
解得:t=0或t=﹣1,
∴当t=0,点P与点O重合,不合题意,应舍去,
∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
(3)P(﹣4,8)或(4,8),
如备用图所示,延长PQ交x轴于点H,
设此时点P的坐标为(m,m2),
则tan∠HPO=,
又,易得tan∠OBC=,
当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
于是,得,
解得:m=±4,
所以P(﹣4,8)或(4,8).
【点睛】
此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.
20、(1)200名;折线图见解析;(2)1210人.
【解析】
(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;
(2)利用样本估计总体的方法计算即可解答.
【详解】
(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).
补全折线统计图如下:
.
(2)2200×=1210(人).
答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.
【点睛】
本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.
21、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
22、操作平台C离地面的高度为7.6m.
【解析】
分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
详解:作CE⊥BD于F,AF⊥CE于F,如图2,
易得四边形AHEF为矩形,
∴EF=AH=3.4m,∠HAF=90°,
∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
在Rt△ACF中,∵sin∠CAF=,
∴CF=9sin28°=9×0.47=4.23,
∴CE=CF+EF=4.23+3.4≈7.6(m),
答:操作平台C离地面的高度为7.6m.
点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
23、15千米.
【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.
【详解】
:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:
=4×
解得:x=15,经检验x=15是原方程的解且符合实际意义.
答:小张用骑公共自行车方式上班平均每小时行驶15千米.
24、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
【解析】
(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.
(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.
(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.
【详解】
解:(1)∵Rt△EFG∽Rt△ABC
∴,即,
∴FG==3cm
∵当P为FG的中点时,OP∥EG,EG∥AC
∴OP∥AC
∴x==×3=1.5(s)
∴当x为1.5s时,OP∥AC.
(2)在Rt△EFG中,由勾股定理得EF=5cm
∵EG∥AH
∴△EFG∽△AFH
∴,
∴AH=(x+5),FH=(x+5)
过点O作OD⊥FP,垂足为D
∵点O为EF中点
∴OD=EG=2cm
∵FP=3﹣x
∴S四边形OAHP=S△AFH﹣S△OFP
=•AH•FH﹣•OD•FP
=•(x+5)•(x+5)﹣×2×(3﹣x)
=x2+x+3(0<x<3).
(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1
则S四边形OAHP=×S△ABC
∴x2+x+3=××6×8
∴6x2+85x﹣250=0
解得x1=,x2=﹣(舍去)
∵0<x<3
∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
【点睛】
本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.
25、5-
【解析】
分析:先化简各二次根式,再根据混合运算顺序依次计算可得.
详解:原式=3×(2-)-+
=6--+
=5-
点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.
26、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
(4)根据题意可以写出树状图,从而可以解答本题.
【详解】
解:(1)n%=1﹣10%﹣15%﹣35%=40%,
故答案为40;
(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
故答案为144°;
(3)调查的结果为D等级的人数为:400×40%=160,
故补全的条形统计图如右图所示,
(4)由题意可得,树状图如右图所示,
P(奇数)
P(偶数)
故游戏规则不公平.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
27、(1)300米/分;(2)y=﹣300x+3000;(3)分.
【解析】
(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.
(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.
(3)求出CD的解析式,列出方程,求解即可.
【详解】
解:(1)由题意得:(米/分),
答:小张骑自行车的速度是300米/分;
(2)由小张的速度可知:B(10,0),
设直线AB的解析式为:y=kx+b,
把A(6,1200)和B(10,0)代入得:
解得:
∴小张停留后再出发时y与x之间的函数表达式;
(3)小李骑摩托车所用的时间:
∵C(6,0),D(9,2400),
同理得:CD的解析式为:y=800x﹣4800,
则
答:小张与小李相遇时x的值是分.
【点睛】
考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.
浙江省杭州拱墅区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份浙江省杭州拱墅区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,已知方程组,那么x+y的值等内容,欢迎下载使用。
成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算4+等内容,欢迎下载使用。
2021-2022学年山东省青岛市局属四校联考初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年山东省青岛市局属四校联考初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列运算中,计算结果正确的是等内容,欢迎下载使用。