
人教B版 (2019)选择性必修 第一册2.6.2 双曲线的几何性质学案设计
展开
这是一份人教B版 (2019)选择性必修 第一册2.6.2 双曲线的几何性质学案设计,共3页。学案主要包含了学习目标,学习重难点,学习过程等内容,欢迎下载使用。
双曲线的几何性质 【学习目标】1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。2.能用双曲线的简单几何性质解决一些简单问题。【学习重难点】双曲线的几何性质及初步运用。【学习过程】一、复习提问引入新课1.椭圆有哪些几何性质,是如何探讨的?2.双曲线的两种标准方程是什么?下面我们类比椭圆的几何性质来研究它的几何性质。二、类比联想得出性质(范围、对称性、顶点)引导学生完成下列关于椭圆与双曲线性质的表格: 三、渐近线双曲线的范围在以直线和为边界的平面区域内,那么从x,y的变化趋势看,双曲线与直线具有怎样的关系呢?根据对称性,可以先研究双曲线在第一象限的部分与直线的关系。双曲线在第一象限的部分可写成:。 设是它上面的点,设点N是直线上与有相同横坐标的点,则。设MQ是点M到直线的距离,则有。当x逐渐增大,并趋向于无穷大时,MN趋向于0,这说明,双曲线在射线ON的下方,并无限接近于射线ON。在其他象限内也可以证明类似的情况。我们把两条直线叫做双曲线的渐近线。定义:直线叫做双曲线的渐近线;直线叫做双曲线的渐近线。四、离心率由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:1.双曲线的焦距与实轴的比叫做双曲线的离心率,且。2.由于,所以越大,也越大,即渐近线的斜率绝对值越大。这时双曲线的形状就从扁狭逐渐变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔。这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变。五、练习1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。(1); (2)2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;(3)离心率,经过点; (4)两条渐近线的方程是,经过点。3.求以椭圆的焦点为顶点,而以椭圆的顶点为焦点的双曲线的方程。六、小结双曲线的几何性质及其应用。
相关学案
这是一份高中数学人教B版 (2019)选择性必修 第一册第二章 平面解析几何2.6 双曲线及其方程2.6.2 双曲线的几何性质导学案,共4页。学案主要包含了学习目标,学习过程,达标检测等内容,欢迎下载使用。
这是一份人教B版 (2019)选择性必修 第一册第二章 平面解析几何2.6 双曲线及其方程2.6.2 双曲线的几何性质导学案,共4页。学案主要包含了学习目标,学习过程,学习拓展,学习小结,达标检测等内容,欢迎下载使用。
这是一份人教B版 (2019)选择性必修 第一册第二章 平面解析几何2.6 双曲线及其方程2.6.2 双曲线的几何性质学案及答案,共4页。学案主要包含了学习目标,学习过程,达标检测等内容,欢迎下载使用。
