终身会员
搜索
    上传资料 赚现金

    2022年最新冀教版八年级数学下册第二十二章四边形章节练习试卷(无超纲)

    立即下载
    加入资料篮
    2022年最新冀教版八年级数学下册第二十二章四边形章节练习试卷(无超纲)第1页
    2022年最新冀教版八年级数学下册第二十二章四边形章节练习试卷(无超纲)第2页
    2022年最新冀教版八年级数学下册第二十二章四边形章节练习试卷(无超纲)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共27页。试卷主要包含了如图,菱形的对角线,六边形对角线的条数共有,下列说法正确的是等内容,欢迎下载使用。


    八年级数学下册第二十二章四边形章节练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图①,在ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为xABP的面积为yyx的函数,函数的图象如图②所示,则图②中的a值为(  )

    A.3 B.4 C.14 D.18

    2、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是(       )

    A.测量对角线是否互相平分 B.测量一组对角是否都为直角

    C.测量对角线长是否相等 D.测量3个角是否为直角

    3、下列说法错误的是(      

    A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角

    C.矩形的对角线互相垂直 D.正方形有四条对称轴

    4、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为ab,且a2b2ab+10,那么小正方形的面积为(      

    A.2 B.3 C.4 D.5

    5、如图,菱形的对角线相交于点为过点的一条直线,则图中阴影部分的面积为(      

    A.4 B.6 C.8 D.12

    6、六边形对角线的条数共有(      

    A.9 B.18 C.27 D.54

    7、下列说法正确的是(  )

    A.只有正多边形的外角和为360°

    B.任意两边对应相等的两个直角三角形全等

    C.等腰三角形有两条对称轴

    D.如果两个三角形一模一样,那么它们形成了轴对称图形

    8、在四边形ABCD中,对角线ACBD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是(      

    A.∠ABC=90° B.ACBD C.ABCD D.ABCD

    9、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )

    A.120° B.60° C.30° D.15°

    10、将一张长方形纸片按如图所示的方式折叠,BDBE为折痕,则∠EBD的度数(    

    A.80° B.90° C.100° D.110°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,在平行四边形ABCD中,

    (1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.

    (2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;

    (3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.

    2、如图,正方形ABCD中,EBC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EFDCG,点G恰为CD边中点,连接AGCFAC.若AB=6,则△AFC的面积为_______.

    3、在菱形中,,其所对的对角线长为2,则菱形的面积是__.

    4、已知一个多边形的内角和为,则这个多边形是________边形.

    5、如图,在平行四边形ABCD中,对角线ACBD交于点OACABAB,且ACBD=2:3,那么AC的长为___.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在矩形ABCD中,

    (1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.

    (2)在(1)的条件下,求证:AE=CF

    2、如图,在中,于点E,延长BC至点F,使,连接AFDEDF

    (1)求证:四边形AEFD为矩形;

    (2)若,求DF的长.

    3、如图,已知矩形ABCDABAD).EBC上的点,AE=AD

    (1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);

    (2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.

    4、在平面直角坐标系中,已知点,以点为顶点的平行四边形有三个,记第四个顶点分别为,如图所示.

    (1)若,则点的坐标分别是(  ),(  ),(  );

    (2)若△是以为底的等腰三角形,

    ①直接写出的值;

    ②若直线与△有公共点,求的取值范围.

    (3)若直线与△有公共点,求的取值范围.

    5、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.

    (1)请证明“射影定理”中的结论③

    (2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接

    ①求证:

    ②若,求的长.

     

    -参考答案-

    一、单选题

    1、A

    【解析】

    【分析】

    由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出CBD高,进而求解.

    【详解】

    解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,

    过点BBHDC于点H

    CH=x,则DH=8-x

    BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x2=62-x2

    解得:

    则:

    故选:A.

    【点睛】

    本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.

    2、D

    【解析】

    【分析】

    矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.

    【详解】

    解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;

    B、测量一组对角是否都为直角,不能判定形状,故不符合题意;

    C、测量对角线长是否相等,不能判定形状,故不符合题意;

    D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;

    故选:D.

    【点睛】

    本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.

    3、C

    【解析】

    【分析】

    根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.

    【详解】

    解:A、平行四边形对边平行且相等,正确,不符合题意;

    B、菱形的对角线平分一组对角,正确,不符合题意;

    C、矩形的对角线相等,不正确,符合题意;

    D、正方形有四条对称轴,正确,不符合题意;

    故选:C.

    【点睛】

    本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.

    4、A

    【解析】

    【分析】

    由正方形1性质和勾股定理得,再由,得,则,即可解决问题.

    【详解】

    解:设大正方形的边长为

    大正方形的面积是18,

    小正方形的面积

    故选:A.

    【点睛】

    本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出

    5、B

    【解析】

    【分析】

    根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.

    【详解】

    解:四边形为菱形,

    ,

    ,

    ,

    故选:

    【点睛】

    此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.

    6、A

    【解析】

    【分析】

    n边形对角线的总条数为:n≥3,且n为整数),由此可得出答案.

    【详解】

    解:六边形的对角线的条数= =9.

    故选:A.

    【点睛】

    本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:n≥3,且n为整数).

    7、B

    【解析】

    【分析】

    选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.

    【详解】

    解:A.所有多边形的外角和为,故本选项不合题意;

    B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;

    C.等腰三角形有1条对称轴,故本选项不合题意;

    D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;

    故选:B.

    【点睛】

    此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.

    8、B

    【解析】

    9、A

    【解析】

    【分析】

    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.

    【详解】

    解:∵四边形ABCD是平行四边形,

    BCAD

    ∴∠A+∠B=180°,

    把∠A=2∠B代入得:3∠B=180°,

    ∴∠B=60°,

    ∴∠C=120°

    故选:A.

    【点睛】

    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.

    10、B

    【解析】

    【分析】

    根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∠ABE+∠ABE+∠DBC+∠DBC′=180°,且∠EBD=∠ABE+∠DBC′,继而即可求出答案.

    【详解】

    解:根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,

    又∵∠ABE+∠ABE+∠DBC+∠DBC′=180°,

    ∴∠EBD=∠ABE+∠DBC′=180°×=90°.

    故选B

    【点睛】

    此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠ABE,∠DBC=∠DBC′是解题的关键.

    二、填空题

    1、     50°     130°     50°     100°     80°     100°     80°

    【解析】

    2、3.6##

    【解析】

    【分析】

    首先通过HL证明RtABERtAFB,得BEEF,同理可得:DGFG,设BEx,则CE=6﹣xEG=3+x,在RtCEG中,利用勾股定理列方程求出BE=2,SAFCSAECSAEFSEFC代入计算即可.

    【详解】

    解:∵四边形ABCD是正方形,

    ABAD,∠B=∠D=90°,

    ∵将AB边沿AE折叠到AF

    ABAF,∠B=∠AFB=90°,

    RtABERtAFB中,

    RtABERtAFBHL),

    BEEF

    同理可得:DGFG

    ∵点G恰为CD边中点,

    DGFG=3,

    BEx,则CE=6﹣xEG=3+x

    RtCEG中,由勾股定理得:

    x+3)2=32+(6﹣x2

    解得x=2,

    BEEF=2,CE=4,

    SCEG×4×3=6,

    EFFG=2∶3,

    SEFC×6=

    SAFCSAECSAEFSEFC

    ×4×6﹣×2×6﹣

    =12﹣6﹣

    =3.6.

    故答案为:3.6.

    【点睛】

    本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.

    3、

    【解析】

    【分析】

    根据菱形的性质证得△ABD是等边三角形,得到OB,利用勾股定理求出OA,由菱形的性质求出菱形的面积.

    【详解】

    解:如图所示:

    在菱形中,,其所对的对角线长为2,

    是等边三角形,

    ,故

    则菱形的面积

    故答案为:

    【点睛】

    此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.

    4、八##8

    【解析】

    【分析】

    n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.

    【详解】

    解:根据n边形的内角和公式,得

    n-2)•180=1080,

    解得n=8.

    ∴这个多边形的边数是8.

    故答案为:八.

    【点睛】

    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.

    5、4

    【解析】

    【分析】

    四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.

    【详解】

    解:∵四边形是平行四边形

    ∴设

    解得:

    故答案为:4.

    【点睛】

    本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.

    三、解答题

    1、 (1)见解析

    (2)见解析

    【解析】

    【分析】

    (1)利用尺规作出图形即可.

    (2)利用全等三角形的性质证明即可.

    (1)

    解:如图,直线EF即为所求作.

    (2)

    证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC

    EFBD的垂直平分线,

    ∴∠EOD=∠FOB=90°,OB=OD

    在△EOD与△FOB中,

    ∴△EOD≌△FOBASA),

    ED=BF

    AD-ED=BC-BF,即AE=CF

    【点睛】

    本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    2、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)根据线段的和差关系可得BCEF,根据平行四边形的性质可得ADBCADBC,即可得出ADEF,可证明四边形AEFD为平行四边形,根据AEBC即可得结论;

    (2)根据矩形的性质可得AFDE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.

    (1)

    BECF

    BE+CECF+CE,即BCEF

    ABCD是平行四边形,

    ADBCADBC

    ADEF

    ADEF

    ∴四边形AEFD为平行四边形,

    AEBC

    ∴∠AEF=90°,

    ∴四边形AEFD为矩形.

    (2)

    ∵四边形AEFD为矩形,

    AFDE=4,DF=AE

    AB2+AF2BF2

    ∴△BAF为直角三角形,∠BAF=90°,

    AE=

    【点睛】

    本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.

    3、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由ADBC,即可求解;

    (2)根据矩形的性质可得∠B=∠C=∠D=90°,ADBC=5,ABCD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.

    (1)

    解:如图,作∠DAE的角平分线,与DC的交点即为所求.

    AE=AD,∠EAF=∠DAFAF=AF

    ∴△AEF≌△ADF

    ∴∠AEF=∠D=90°,

    ∴∠DAE+∠DFE=180°,

    ∵∠EFC+∠DFE=180°,

    ∴∠EFC=∠DAE

    ∵在矩形ABCD中,ADBC

    ∴∠BEA=∠DAE

    ∴∠EFC=∠BEA

    (2)

    解:∵四边形ABCD是矩形,

    ∴∠B=∠C=∠D=90°,ADBC=5,ABCD=4,

    AEAD=5,

    BE=3,

    ECBCBE=5﹣3=2,

    由(1)得:△AEF≌△ADF

    中,

    【点睛】

    本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.

    4、 (1)-3,3,1,3,-3,-1

    (2)①-2;②

    (3)

    【解析】

    【分析】

    (1)分别以为对角线,利用平行四边形以及平移的性质可得点的坐标;

    (2)①根据平行公理得在同一直线上,在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;

    ②由①求得的的值可得的坐标,分别求出直线过点的值即可求解;

    (3)由题意用表示出点的坐标,画出图形,求出直线与△交于点的值即可求解.

    (1)

    解:

    轴.

    为对角线时,

    四边形是平行四边形,

    向左平移2个单位长度可得,即

    为对角线时,

    四边形是平行四边形,

    向右平移2个单位长度可得,即

    为对角线时,

    四边形是平行四边形,

    对角线的中点与的中点重合,

    的中点为

    故答案为:

    (2)

    解:①如图,若△是以为底的等腰三角形,

    四边形是平行四边形,

    在同一直线上,在同一直线上,

    是等腰三角形△的中位线,

    ②由①得

    当直线过点时,,解得:

    当直线过点时,,解得:

    的取值范围为

    (3)

    解:如图,

    连接交于点

    四边形是平行四边形,

    关于点对称,

    直线与△有公共点,

    当直线与△交于点,解得:

    时,直线与△有公共点;

    当直线与△交于点,解得:

    时,直线与△有公共点;

    综上,的取值范围为

    【点睛】

    本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.

    5、 (1)见解析;

    (2)①见解析;②

    【解析】

    【分析】

    (1)由AA证明,再由相似三角形对应边称比例得到,继而解题;

    (2)①由“射影定理”分别解得,整理出,再结合即可证明

    ②由勾股定理解得,再根据得到,代入数值解题即可.

    (1)

    证明:

    (2)

    四边形ABCD是正方形

    中,

    【点睛】

    本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.

     

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共30页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共30页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试优秀课后练习题:

    这是一份初中数学第二十二章 四边形综合与测试优秀课后练习题,共33页。试卷主要包含了已知,如图,在正方形ABCD中,点E,下列关于的叙述,正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map