


初中数学冀教版九年级下册第30章 二次函数综合与测试精品综合训练题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品综合训练题,共31页。试卷主要包含了二次函数y=ax2+bx+c,若二次函数y=a,抛物线的顶点坐标为等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
2、如图,直线与y轴交于点A,与直线交于点B,若抛物线的顶点在直线上移动,且与线段、都有公共点,则h的取值范围是( )
A. B. C. D.
3、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )
A.① B.② C.③ D.②③
4、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有( )
A.1个 B.2个 C.3个 D.4个
5、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )
A. B. C. D.
6、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )
A.2 B.3 C.4 D.5
7、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
8、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
9、抛物线的顶点坐标为( )
A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)
10、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.
2、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
3、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.
4、已知二次函数的图象经过点,那么a的值为_____.
5、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
三、解答题(5小题,每小题10分,共计50分)
1、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.
(1)求抛物线的解析式;
(2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
2、如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,点为的中点.
(1)求该抛物线的函数表达式;
(2)若点是第四象限内该抛物线上一动点,求面积的最大值;
(3)是抛物线的对称轴上一点,是抛物线上一点,直接写出所有使得以点,,,为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出来.
3、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
(1)求的值;
(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
(注:利润=(销售单价-进价)×销售量)
4、己知二次函数.
(1)若此二次函数图象的对称轴为,求它的解析式;
(2)当时,y随x增大而减小,求k的取值范围.
5、已知抛物线经过点,与y轴交于点C,连接.
(1)求抛物线的解析式;
(2)在直线上方抛物线上取一点P,过点P作轴交边于点Q,求的最大值;
(3)在直线上方抛物线上取一点D,连接.交于点F,当时,求点D的坐标.
-参考答案-
一、单选题
1、C
【解析】
【分析】
抛物线的对称轴为:,根据公式直接计算即可得.
【详解】
解:,
其中:,,,
,
故选:C.
【点睛】
本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
2、B
【解析】
【分析】
将与联立可求得点B的坐标,然后由抛物线的顶点在直线可求得k=−h,于是可得到抛物线的解析式为y=(x−h)2−h,由图形可知当抛物线经过点B和点C时抛物线与线段AB、BO均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.
【详解】
解:∵将与联立得:,
解得:.
∴点B的坐标为(−2,1),
由抛物线的解析式可知抛物线的顶点坐标为(h,k),
∵将x=h,y=k,代入得y=−x得:−h=k,解得k=−h,
∴抛物线的解析式为y=(x−h)2−h,
如图1所示:当抛物线经过点C时,
将C(0,0)代入y=(x−h)2−h得:h2−h=0,解得:h1=0(舍去),h2=;
如图2所示:当抛物线经过点B时,
将B(−2,1)代入y=(x−h)2−h得:(−2−h)2−h=1,整理得:2h2+7h+6=0,解得:h1=−2,h2=−(舍去).
综上所述,h的范围是−2≤h≤,即−2≤h≤
故选:B.
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数的交点与一元二次方程组的关系、待定系数法求二次函数的解析式,通过平移抛物线探究出抛物线与线段AB、BO均有交点时抛物线经过的“临界点”为点B和点O是解题解题的关键.
3、B
【解析】
【分析】
把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
【详解】
解:∵点M(a,b)在抛物线y=x(2-x)上,
当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
∵△=4-4×(-3)>0,
∴有两个不相等的值,
∴点M的个数为2,故①错误;
当b=1时,1=a(2-a),整理得a2-2a+1=0,
∵△=4-4×1=0,
∴a有两个相同的值,
∴点M的个数为1,故②正确;
当b=3时,3=a(2-a),整理得a2-2a+3=0,
∵△=4-4×3<0,
∴点M的个数为0,故③错误;
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
4、C
【解析】
【分析】
根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
【详解】
解:∵图象开口向下,
∴a<0,
∵对称轴为直线x=1,
∴−=1,
∴b=−2a>0,
∵图象与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,
∴①说法正确,
由图象可知抛物线与x轴有两个交点,
∴b2−4ac>0,
∴②错误,
由图象可知,当x=−2时,y<0,
∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
∴③正确,
由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
∵对称轴是x=1,
∴另一个根为x=5,
∴④正确,
∴正确的有①③④,
故选:C.
【点睛】
本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
5、B
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
故当时,,即,故B错误,符合题意;
C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
6、B
【解析】
【分析】
由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
【详解】
解:∵对称轴是直线x=1,且经过点(0,2),
∴左同右异ab<0,c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴b2-4ac>0,所以②正确;
∵抛物线对称轴是直线x=1,
∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∴9a+3b+c<2,所以③正确;
∵对称轴为x=1,
∴=1,即b=-2a,
∵x=-1时,y=a-b+c>0,
∴3a+c>0,所以④错误;
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
∴y1<y3<y2,所以⑤不正确;
故选:B.
【点睛】
本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
7、C
【解析】
【分析】
把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
【详解】
解:把三个点,,的横坐标代入解析式得,
;;;
所以,,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
8、A
【解析】
【分析】
根据二次函数的平移性质得出a不发生变化,即可判断a=1.
【详解】
解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
∴a=1.
故选:A.
【点睛】
此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
9、A
【解析】
【分析】
根据抛物线的顶点坐标为 ,即可求解.
【详解】
解:抛物线的顶点坐标为.
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.
10、B
【解析】
【分析】
根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
【详解】
解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
二、填空题
1、##
【解析】
【分析】
过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
【详解】
解:如图,过点作,交于点,
∠C=90°.直角边AC=3m、BC=4m,
设,则
四边形是矩形
,
整理得
设矩形的面积为,则
当取得最大值时,,此时
故答案为:
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
2、
【解析】
【分析】
根据点,的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.
【详解】
解:抛物线经过点和点,
抛物线的对称轴为直线.
故答案为:.
【点睛】
本题考查了二次函数的性质,解题的关键是根据抛物线的对称性,找出抛物线的对称轴.
3、5
【解析】
【分析】
先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
【详解】
解:∵抛物线y=a(x-1)2+k(a、k为常数),
∴对称轴为直线x=1,
∵点A和点B关于直线x=1对称,且点A(-1,0),
∴点B(3,0),
∴OB=3,
∵C点和D点关于x=1对称,且点C(0,a+k),
∴点D(2,a+k),
∴CD=2,
∴线段OB与线段CD的长度和为5,
故答案为5.
【点睛】
本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
4、
【解析】
【分析】
把已知点的坐标代入抛物线解析式可得到的值.
【详解】
解:二次函数的图象经过点,
,
解得:.
故答案为:.
【点睛】
本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.
5、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)根据二次函数的对称轴及过一点,建立等式进行求解;
(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
(1)
解:对称轴为,
把代入得:,
解得:,
抛物线的解析式为;
(2)
解:设点D的坐标为,
点D在BC的下方,
,
,
,
,
,
是等腰三角形,
,
轴,
E的坐标为,
,
,
,
当时,的最大值是.
【点睛】
本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
2、 (1)
(2)最大值为2
(3),,
【解析】
【分析】
(1)将点A,B坐标代入得方程组,求解即可;
(2)分别求出点B,C,D的坐标,运用待定系数法求出BC解析式,设,则,,根据三角形面积公式可得二次函数关系式,配方求解即可;
(3)分两种情况:①若AD是平行四边形的对角线,②若AD是平行四边形的边,分别进行讨论即可.
(1)
将,代入
,
解这个方程组得
∴该抛物线的函数表达式为
(2)
在中,当时,,
∴,
∵点D为线段BC的中点,且,
∴,即,
设直线BC的解析式为,
将,代入得,
解得,
∴直线BC的解析式为,
过点作轴交于点,
设,则
,
当时,有最大值为2
(3)
满足条件的点的坐标为:,,
由可得对称轴为:直线,
设,又,
①若AD是平行四边形的对角线,
当MN与AD互相平分时,四边形ANDM是平行四边形,
即MN经过AD的中点(),即(0,-1)
∴
∴n=-1,
∴,
②若AD是平行四边形的边,
Ⅰ.当NM∥AD且NM=AD时,四边形ANMD是平行四边形,
∵A(-2,0),D(2,2),点M的横坐标为1,
∴点N的横坐标为1-4=-3,
∴
∴点N的坐标为;
Ⅱ.当NM∥AD且NM=AD时,四边形AMND是平行四边形,
∵A(-2,0),D(2,2),点M的横坐标为1,
∴点N的横坐标为1+4=5,
∴
∴点N的坐标为;
综上所述,点M的坐标为,,.
【点睛】
本题是二次函数有关的综合题,主要考查了待定系数法求函数解析式,二次函数图象和性质,平行四边形性质等,熟练掌握待定系数法、二次函数图象和性质及平行四边形性质等相关知识,运用分类讨论思想和数形结合思想是解题关键.
3、 (1)的值是500;
(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
【解析】
【分析】
(1)根据利润=(销售单价-进价)×销售量列方程求解即可;
(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
(1)
解:由题意可得,,
解得:,
答:的值是500;
(2)
解:设利润为w元,
由题意:,
,
∵-100,
∴其图象开口向上,
∵时,y随x 的增大而减小,
∴对称轴位于x=1的右侧或对称轴为直线x=1,
∴,
解得:.
【点睛】
此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.
5、 (1)
(2)
(3)(1,4)或(2,3)
【解析】
【分析】
(1)根据题意待定系数法求二次函数解析式即可;
(2)根据二次函数解析式求得点得到坐标,进而求得直线的解析式,设P点坐标为,则Q点坐标为,进而表示出的长,根据二次函数的性质求得最大值即可;
(3)过点D作BC的平行线交x轴于G,交y轴于E,根据∆COF与∆CDF共高,面积比转化为底边比,求得,根据平行线分线段成比例求得,进而求得的长,即可求得的坐标,根据一次函数的平移可得直线EG解析式为:y= -x+5,联立直线与抛物线解析式,即可求得点的坐标
(1)
抛物线经过点,
解得
抛物线的解析式为:
(2)
抛物线的解析式为:
令,则
设直线的解析式为
则
解得
直线BC的解析式为:
过点P作PQ⊥x轴交BC于点Q,设P点坐标为,
则Q点坐标为,
则
∴PQ的最大值是.
(3)
∵∆COF与∆CDF共高,面积比转化为底边比,
OF:DF=S△COF:S△CDF=3:2
过点D作BC的平行线交x轴于G,交y轴于E,
根据平行线分线段成比例,
OF:FD=OC:CE=3:2
∵OC=3,
∴OE=5,
∴E(0,5)
∴直线EG解析式为:y= -x+5
联立方程,得:
解得:,
则点D的坐标为(1,4)或(2,3);
【点睛】
本题考查了二次函数综合,待定系数法求二次函数解析式,根据二次函数的性质求最值,平行线分线段成比例,掌握以上知识是解题的关键.
相关试卷
这是一份数学冀教版第30章 二次函数综合与测试优秀课后作业题,共35页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份九年级下册第30章 二次函数综合与测试优秀课堂检测,共32页。试卷主要包含了抛物线,,的图象开口最大的是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试精品课堂检测,共27页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
