初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题
展开冀教版七年级数学下册第七章相交线与平行线同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列说法正确的是( )
A.同位角相等
B.在同一平面内,如果a⊥b,b⊥c,则a⊥c
C.相等的角是对顶角
D.在同一平面内,如果a∥b,b∥c,则a∥c
2、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
3、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )
A.相等 B.互余或互补 C.互补 D.相等或互补
4、下列命题不正确的是( )
A.直角三角形的两个锐角互补 B.两点确定一条直线
C.两点之间线段最短 D.三角形内角和为180°
5、如图,与交于点,与互余,,则的度数为( )
A. B. C. D.
6、如图,直线a、b被直线c所截,下列说法不正确的是( )
A.1与5是同位角 B.3与6是同旁内角
C.2与4是对顶角 D.5与2是内错角
7、如图,某位同学将一副三角板随意摆放在桌上,则图中的度数是( )
A.70° B.80° C.90° D.100°
8、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )
A.只有 B.只有 C.和均可 D.和均可
9、下列说法正确的是 ( )
A.不相交的两条直线是平行线.
B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.
C.同一平面内,不相交的两条射线叫做平行线.
D.同一平面内,没有公共点的两条直线是平行线.
10、如图,已知OE是的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.
2、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.
3、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.
4、如图,把一条两边边沿互相平行的纸带折叠,若,则_______.
5、如图,当直线AB与CD相交于O点,∠AOD=______时,
那么AB与CD垂直,记作:AB______CD.
符号语言:因为∠AOD=90°(已知) ,
所以AB⊥CD( ) .
三、解答题(5小题,每小题10分,共计50分)
1、如图,的三个顶点A、B、C在正方形网格中,每小方格的边长都为1cm.请在方格纸上画图并回答下列问题:
(1)延长线段AB到点D,使;
(2)过C点画AB的垂线,垂足为点E;
(3)过A点画直线,交直线CE于点F;
(4)点C到直线AB的距离为线段 的长度.
2、如图,点为直线上一点,为一射线,平分,平分.
(1)若,试探究,的位置关系,并说明理由.
(2)若为任意角,()中,的位置关系是否仍成立?请说明理由,由此你发现了什么规律?(数学思想链接:从特殊到一般)
3、如图,直线AB、CD相交于点O,射线OE在∠DOB内部,且.过O作OF⊥OE.若,
(1)求∠BOE的度数(用含m的代数式表示);
(2)若,试说明OB平分∠DOF.
4、请把下列证明过程及理由补充完整(填在横线上):
已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.
证明:∵AD∥BC(已知),
∴∠3= ( ).
∵∠3=∠4(已知),
∴∠4= ( ).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF( ).
即∠BAF= .
∴∠4=∠BAF.( ).
∴AB∥CD( ).
5、如图所示,点、分别在、上,、均与相交,,,求证:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.
【详解】
解:A. 同位角不一定相等,故该项不符合题意;
B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;
C. 相等的角不一定是对顶角,故该项不符合题意;
D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;
故选:D.
【点睛】
此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.
2、D
【解析】
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
3、D
【解析】
【分析】
由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.
【详解】
解:BD⊥AD,CE⊥AB,如图:
∵∠A=90°﹣∠ABD=∠DBC,
∴∠A与∠DBC两边分别垂直,它们相等,
而∠DBE=180°﹣∠DBC=180°﹣∠A,
∴∠A与∠DBE两边分别垂直,它们互补,
故选:D.
【点睛】
本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.
4、A
【解析】
【分析】
根据直角三角形两锐角互余可直接进行判断.
【详解】
解:A、直角三角形的两个锐角互补,是假命题,符合题意;
B、两点确定一条直线,是真命题,不符合题意;
C、两点之间线段最短,是真命题,不符合题意;
D、三角形内角和为,是真命题,不符合题意;
故选A.
【点睛】
本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.
5、B
【解析】
【分析】
先由与互余,求解 再利用对顶角相等可得答案.
【详解】
解:与互余,
,
,
,
,
故选:B.
【点睛】
本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.
6、D
【解析】
【分析】
根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
【详解】
解:A、∠1与∠5是同位角,故本选项不符合题意;
B、∠3与∠6是同旁内角,故本选项不符合题意.
C、∠2与∠4是对顶角,故本选项不符合题意;
D、∠5与2不是内错角,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
7、C
【解析】
【分析】
如图(见解析),过点作,先根据平行线的性质可得,再根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.
8、C
【解析】
【分析】
由平行线之间的距离的定义判定即可得解.
【详解】
解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,
线段和都可以示直线与之间的距离,
故选:C.
【点睛】
本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.
9、D
【解析】
【分析】
根据平行线的定义逐项分析即可.
【详解】
A、同一平面内不相交的两条直线是平行线,故此说法错误;
B、两条线段不相交也可以不平行,故此说法错误;
C、同一平面内,不相交的两条射线可以平行,也可以既不平行也不相交,故此说法错误;
D、同一平面内,没有公共点的两条直线是平行线,此说法正确,
故选D.
【点睛】
本题考查了平行线的定义,理解此定义是关键,属于概念基础题.
10、B
【解析】
【分析】
根据角平分线定义得到,由于反例要满足角相等且不是对顶角,所以可作为反例.
【详解】
解:OE是的平分线,
可作为说明命题“相等的角是对顶角”为假命题的反例
故选:B.
【点睛】
本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.
二、填空题
1、6
【解析】
【分析】
根据点到直线的距离的定义,可得答案.
【详解】
解:因为∠C=90°,
所以AC⊥BC,
所以A到BC的距离是AC,
因为线段AC=6cm,
所以点A到BC的距离为6cm.
故答案为:6.
【点睛】
本题考查了点到直线的距离,明确定义是关键.
2、故答案为:
【点睛】
本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.
75.
【解析】
【分析】
直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∴∠1+∠2=90°,
∵∠1=55°16′,
∴∠2=90°﹣55°16′=34°44′.
故答案为:34°44′.
【点睛】
本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.
3、 1 垂直
【解析】
略
4、62°##62度
【解析】
【分析】
如图,根据平行线的性质可得,根据折叠的性质可得,再利用平角等于180°,据此求解即可.
【详解】
解:∵纸片两边平行,
∴
由折叠的性质可知,,
∴,
∴=62°.
故答案为:62°.
【点睛】
本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点.
5、 90° ⊥ 垂直的定义
【解析】
略
三、解答题
1、 (1)AB=BD,见详解;
(2)CE⊥AD于E,见详解;
(3)AF∥BC;见详解;
(4)CE.
【解析】
【分析】
(1)根据网格的性质,线段中点定义,得出BD=3,延长即可;
(2)根据网格的性质,利用点平移方法即可画出CE⊥AD;
(3)根据网格中小正方形对角线的性质,即可画出AF∥BC;
(4)根据网格的性质, CE⊥AB,根据点到直线的距离得出CE的长即可得
(1)
解:根据题意,得AB=3cm,在AB的延长线上,截取BD=3
则AB=BD,如图所示:
(2)
解:如图所示:点C向下平移2个单位取点E,连结CE,则CE⊥AD于E;
(3)
解:如图所示:∵BE=2=CE,AB=3,
∴AE=AB+BE=3+2=5,
∴点C向上平移3个格到点F,连结AF,则AF∥BC,
∵AF是正方形网格的对角线,CB是正方形网格的对角线,
∴∠FAB=45°,∠CBE=45°,
∵∠FAB=∠CBE=45°,
∴AF∥BC;
(4)
点C到直线AB的距离为线段CE的长度.
故答案为CE.
【点睛】
此题主要考查正方形网格中的作图综合问题,熟练掌握网格的性质,中点定义,垂线定义,平行线判定与性质,点到直线的距离是解题关键.
2、 (1),理由见解析
(2)成立,邻补角的两条角平分线互相垂直
【解析】
【分析】
(1)根据,求出∠AOC的度数,根据角平分线得到∠EOC与∠COF的度数,即可得到答案;
(2)根据∠BOC求出∠AOC的度数,根据角平分线得到∠EOC与∠COF的度数,即可得到答案.
(1)
解:.理由如下:
因为,
所以.
因为平分,平分,
所以,,
所以,
所以.
(2)
解:成立.理由:
因为,
所以.
因为平分,平分,
所以,,
所以,
所以.
规律:邻补角的两条角平分线互相垂直.
【点睛】
此题考查了几何图形中角度的和差计算,角平分线的计算,正确理解图形中各角的位置关系进行和差计算是解题的关键,还考查了由特殊到一般的解题思想.
3、 (1)
(2)见解析
【解析】
【分析】
(1)根据直角的性质,可得,从而得到,再由,即可求解;
(2)根据,可得,再由,可得,从而得到,,即可求解.
(1)
解:∵,
∴,
∵直线AB、CD相交于点O,
∴,
∵,
∴,
∵,
∴
(2)
解:∵且,
∴,
∵,
∴,
∴,,
∴.
∴OB平分.
【点睛】
本题主要考查了垂直的性质,角平分线的有关计算,熟练掌握垂直的性质,根据题意得到角与角之间的数量关系是解题的关键.
4、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【解析】
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
5、证明见解析
【解析】
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
冀教版七年级下册第七章 相交线与平行线综合与测试达标测试: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共24页。试卷主要包含了如图,不能推出a∥b的条件是,下列命题中,为真命题的是,以下命题是假命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题,共21页。试卷主要包含了如图,点P是直线m外一点,A,如图,下列条件中不能判定的是,下列说法正确的是,有下列说法等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试测试题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试测试题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,下列各图中,和是对顶角的是等内容,欢迎下载使用。

