初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题
展开冀教版七年级下册第六章二元一次方程组章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
2、下列方程中,是二元一次方程组的是( )
A. B. C. D.
3、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )
A. B.
C. D.
4、若方程组的解为,则方程组的解为( )
A. B.
C. D.
5、若为都是方程ax+by=1的解,则a+b的值是( )
A.0 B.1 C.2 D.3
6、已知,则( )
A. B. C. D.
7、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
8、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )
A.2 B.1 C.﹣1 D.﹣2
9、已知x=3,y=-2是方程2x+my=8的一个解,那么m的值是( )
A.-1 B.1 C.-2 D.2
10、方程x+y=6的正整数解有( )
A.5个 B.6个 C.7个 D.无数个
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、某班组织20名同学去春游,同时租用A、B两种型号的车辆,A种车每辆有8个座位,B种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A种车.
2、2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徵章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.
3、识别一个方程组是否为二元一次方程组的方法:
一看:方程组中的方程是否都是____方程;
二看:方程组中是不是只含有____个未知数;
三看:含未知数的项的次数是不是都为____.
注意:有时还需将方程组化简后再看.
4、若关于x,y的方程是二元一次方程,则的值是__________.
5、成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.
三、解答题(5小题,每小题10分,共计50分)
1、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.
(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?
(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.
2、解方程组:
3、解方程组:
(1)
(2)
4、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.
(1)判断6423,4816是否为“2倍和数”?并说明理由;
(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.
5、解下列方程组:
(1)
(2)
-参考答案-
一、单选题
1、A
【解析】
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
2、B
【解析】
【分析】
根据二元一次方程组的定义解答.
【详解】
解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;
B符合定义,故是二元一次方程组;
C中含有分式,故不符合定义;
D含有三个未知数,故不符合定义;
故选:B.
【点睛】
此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.
3、A
【解析】
【分析】
此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.
【详解】
解:①根据反向而行,得方程为30(x+y)=400;
②根据同向而行,得方程为80(y-x)=400.
那么列方程组,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.
4、B
【解析】
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
5、C
【解析】
【分析】
把为代入ax+by=1,建立方程组,再解方程组即可.
【详解】
解: 为都是方程ax+by=1的解,
解②得:
把代入①得:
故选C
【点睛】
本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.
6、B
【解析】
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
7、B
【解析】
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
8、A
【解析】
【分析】
把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.
【详解】
∵x=2,y=﹣1是方程ax+y=3的一组解,
∴2a-1=3,
解得a=2,
故选A.
【点睛】
本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.
9、A
【解析】
【分析】
根据题意把x=3,y=-2代入方程2x+my=8,可得关于m的一元一次方程,解方程即可求出m的值.
【详解】
解:把x=3,y=-2代入方程2x+my=8,可得:
,解得:.
故选:A.
【点睛】
本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
10、A
【解析】
【分析】
根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可
【详解】
解:方程的正整数解有,,,,共5个,
故选:A.
【点睛】
本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.
二、填空题
1、1或2##2或1
【解析】
【分析】
设租用型车辆,型车辆,再列方程再求解方程的正整数解即可.
【详解】
解:设租用型车辆,型车辆,则
由题意得:为正整数,
或
所以租用型车1辆或2辆,
故答案为:1或2
【点睛】
本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.
2、6100
【解析】
【分析】
设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列出方程求解即可.
【详解】
解:设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列方程得,,
化简得,;
徽章和风铃销售总额为,
把代入得,;
∵,
当时,徽章和风铃销售总额的最大,最大值是(元);
故答案为:6100.
【点睛】
本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.
3、 整式 两 1
【解析】
略
4、0
【解析】
【分析】
根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.
【详解】
解:∵关于,的方程是二元一次方程,
∴,
解得,
∴mn=0,
故答案为:0.
【点睛】
本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.
5、10
【解析】
【分析】
设成成答对了道,昊昊答对了道,答对了一题加上的分数为分,答错一题时应减去的分数为,根据题意列出方程组即可求解,进而根据确定,根据整除,可得或,进而即可求得,代入即可求得的值.
【详解】
设成成答对了道,昊昊答对了道,答对了一题加上的分数为a分,答错一题时应减去的分数,根据题意,得
①-②得:
代入②得
都是整数,则也是整数,且个位数为0,
则或
当时,,
当时,,不符合题意,
故答案为:
【点睛】
本题考查了二元一次方程组的应用,整除,根据题意列出方程组是解题的关键.
三、解答题
1、 (1)甲生产15件,乙生产20件,恰好使两种原材料全部用完
(2)
【解析】
【分析】
(1)设甲生产x件,乙生产y件,根据题意得,,进行计算即可得;
(2)用市场变化后的总销售额减去原计划的总销售额即可得.
(1)
解:设甲生产x件,乙生产y件,根据题意得,
由②得,③
将③代入①得:
,
将代入③得:,
解得
则甲生产15件,乙生产20件,恰好使两种原材料全部用完.
(2)
解:根据题意得,
.
【点睛】
本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.
2、
【解析】
【分析】
方程组利用加减消元法求出解即可.
【详解】
解:,
由①+②,得
4x+5z=13,④
由④-③,得6z=6,
解得,z=1,
把z=1代入③,得x=2,
把x=2,z=1代入①,解得,y=-3,
故原方程组的解是.
【点睛】
本题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
3、 (1)
(2)
【解析】
【分析】
(1)用加法消元法求解;
(2)用减法消元法求解.
(1)
∵
①+②得:,
,
将x=3代入①中得:,
得,
∴原方程组的解是.
(2)
将方程组变形为,
②,得③,
③-①,得,
把代入②,得.
∴原方程组的解是.
【点睛】
本题考查了二元一次方程组的解法,根据题目特点,灵活选择解题方法是解题的关键.
4、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;
(2)最大值是3117,最小值是1107.
【解析】
【分析】
(1)根据定义进行判断即可
(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.
(1)
,
∴6423是“2倍和数”,
,
∴4816不是“2倍和数”;
(2)
设的个位上的数字为,十位上的数字为,则百位上的数字为,
千位上的数字为,
,,,,为整数),
的各数位上的数字之和为,
各数位上的数字之和能被9整除,
能被3整除,
或,
,
,
,
的最大值是3117,最小值是1107.
【点睛】
本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)用代入法即可完成解答;
(2)先把方程组中的两个方程分别化简,再用加减法即可完成解答.
(1)
把①代入②得:
解得:x=1
把x=1代入①中,得y=2
所以原方程组的解为;
(2)
原方程组化简为
③−④得:5x=20
解得:x=4
把x=4代入④得:y=5.5
原方程组的解为.
【点睛】
本题考查了解二元一次方程组,根据方程组的特点灵活选取适当的方法解方程组;当方程组中的两个方程有括号或分母时,往往先把每个方程化简,再用代入法或加减法解.
冀教版第六章 二元一次方程组综合与测试课时训练: 这是一份冀教版第六章 二元一次方程组综合与测试课时训练,共18页。试卷主要包含了《九章算术》中记载等内容,欢迎下载使用。
2021学年第六章 二元一次方程组综合与测试精练: 这是一份2021学年第六章 二元一次方程组综合与测试精练,共18页。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共19页。试卷主要包含了有铅笔,已知a,b满足方程组则的值为等内容,欢迎下载使用。

