搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试题(含答案及详细解析)

    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试题(含答案及详细解析)第1页
    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试题(含答案及详细解析)第2页
    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试题(含答案及详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练,共29页。试卷主要包含了下列语句中,下列说法,下列关于画图的语句正确的是.等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如所示各图中,∠1与∠2是对顶角的是( )
    A.B.C.D.
    2、下列说法:
    ①和为180°且有一条公共边的两个角是邻补角;
    ②过一点有且只有一条直线与已知直线垂直;
    ③同位角相等;
    ④经过直线外一点,有且只有一条直线与这条直线平行,
    其中正确的有( )
    A.0个B.1个C.2个D.3个
    3、在下列各题中,属于尺规作图的是( )
    A.用直尺画一工件边缘的垂线
    B.用直尺和三角板画平行线
    C.利用三角板画的角
    D.用圆规在已知直线上截取一条线段等于已知线段
    4、下列语句中:
    ①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有( )
    A.1个B.2个C.3个D.4个
    5、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2B.∠1>∠2C.∠1<∠2D.∠1=∠2或∠1>∠2或∠1<∠2
    6、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
    A.77°B.64°C.26°D.87°
    7、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
    A.①B.②和③C.④D.①和④
    8、下列关于画图的语句正确的是( ).
    A.画直线
    B.画射线
    C.已知A、B、C三点,过这三点画一条直线
    D.过直线AB外一点画一直线与AB平行
    9、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
    A.39°B.41°C.49°D.51°
    10、如图,∠1与∠2是同位角的是( )
    ① ② ③ ④
    A.①B.②C.③D.④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.
    2、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.
    3、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
    4、如图,直线AB与CD被直线AC所截得的内错角是 ___.
    5、如图,把一张长方形的纸条按如图那样折叠后,若量得∠DBA=40°,则∠ABC的度数为 _____度.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
    2、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.
    (1)如图1,求证:;
    (2)如图2,若,请直接写出图中与互余的角,不需要证明.
    3、已知,,三点在同一条直线上,平分,平分.
    (1)若,如图1,则 ;
    (2)若,如图2,求的度数;
    (3)若如图3,求的度数.
    4、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
    将下列证明过程补充完整:
    证明:∵CE平分(已知),
    ∴__________(角平分线的定义),
    ∵(已知),
    ∴___________(等量代换),
    ∴(______________).
    (探究)已知:如图②,点E在AB上,且CE平分,.求证:.
    (应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
    5、如图,已知,平分,平分,求证.
    证明:∵平分(已知),
    ∴ ( ),
    同理 ,
    ∴ ,
    又∵(已知)
    ∴ ( ),
    ∴.
    6、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)
    (1)当t=3时,求∠AOB的度数;
    (2)在运动过程中,当∠AOB达到60°时,求t的值;
    (3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
    7、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)
    8、如图,直线AB,CD,EF相交于点O,OG⊥CD.
    (1)已知∠AOC=38°12',求∠BOG的度数;
    (2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
    9、如图,直线相交于点平分.
    (1)若,求∠BOD的度数;
    (2)若,求∠DOE的度数.
    10、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
    (1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
    (2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
    【详解】
    解:A.∠1与∠2没有公共顶点,不是对顶角;
    B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
    C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
    D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
    故选:B.
    【点睛】
    本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
    2、B
    【分析】
    根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
    【详解】
    解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;
    ②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
    ③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;
    ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
    其中正确的有④一共1个.
    故选择B.
    【点睛】
    本题考查基本概念的理解,掌握基本概念是解题关键.
    3、D
    【分析】
    根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.
    【详解】
    解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;
    B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;
    C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;
    D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;
    故选D.
    【点睛】
    本题主要考查了尺规作图的定义,解题的关键在于熟知定义.
    4、A
    【分析】
    根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.
    【详解】
    解:①有公共顶点且相等的角不一定是对顶角,故错误;
    ②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误
    ③互为邻补角的两个角的平分线互相垂直,故正确;
    ④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;
    故选A.
    【点睛】
    本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.
    5、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    6、A
    【分析】
    本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
    【详解】
    解:由图可知: AD∥BC
    ∴∠AEG=∠BGD′=26°,
    即:∠GED=154°,
    由折叠可知: ∠α=∠FED,
    ∴∠α==77°
    故选:A.
    【点睛】
    本题主要考察的是根据平行得性质进行角度的转化.
    7、A
    【分析】
    利用平行线的性质逐一判断即可.
    【详解】
    ①是平行线的性质,故符合题意;
    ②是平行线的判定,故不符合题意;
    ③是平行线的判定,故不符合题意;
    ④是平行线的判定,故不符合题意;
    故选:A.
    【点睛】
    本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
    8、D
    【分析】
    直接利用直线、射线的定义分析得出答案.
    【详解】
    解:A、画直线AB=8cm,直线没有长度,故此选项错误;
    B、画射线OA=8cm,射线没有长度,故此选项错误;
    C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;
    D、过直线AB外一点画一直线与AB平行,正确.
    故选:D.
    【点睛】
    此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.
    9、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,
    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    10、B
    【分析】
    同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.
    【详解】
    根据同位角的定义可知②中的∠1与∠2是同位角;
    故选B.
    【点睛】
    本题主要考查了同位角的判断,准确分析判断是解题的关键.
    二、填空题
    1、6 12 6
    【分析】
    根据同位角、同旁内角和内错角的定义判断即可;
    【详解】
    如图所示:
    同位角有:与;与;与,与;与;与;与;与;与;与;与;和,共有12对;
    同旁内角有:与;与;与;与;与;与,共有6对;
    内错角有:与;与;与;与;与;与,共有6对;
    故答案是:6;12;6.
    【点睛】
    本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.
    2、35°
    【分析】
    根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.
    【详解】
    解:∵OE⊥AB,
    ∴∠AOE=90°,
    ∵ ,
    ∴∠AOC=90°- ,
    ∴∠BOD=∠AOC= ,
    故答案为:35°.
    【点睛】
    本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.
    3、48° 132° 48°
    【分析】
    根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
    【详解】
    解:∵ //,∠1=48°,
    ∴∠2=∠1=48°,
    ∵ //,∠1=48°,
    ∴∠4=∠1=48°,
    ∵ //,
    ∴∠3+∠4=180°
    ∴∠3=180°-∠4=180°-48°=132°
    故答案为:48°;132°;48°
    【点睛】
    此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
    4、∠2与∠4
    【分析】
    根据内错角的特点即可求解.
    【详解】
    由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4
    故答案为:∠2与∠4.
    【点睛】
    此题主要考查内错角的识别,解题的关键是熟知内错角的特点.
    5、70
    【分析】
    由∠DBA的度数可知∠ABE度数,再根据折叠的性质可得∠ABC=∠EBC=∠ABE即可.
    【详解】
    解:延长DB到点E,如图:
    ∵∠DBA=40°,
    ∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,
    又∵把一张长方形的纸条按如图那样折叠,
    ∴∠ABC=∠EBC=∠ABE=70°,
    故答案为:70.
    【点睛】
    本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到∠ABC=∠ABE是解题的关键.
    三、解答题
    1、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
    【分析】
    由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
    【详解】
    解:因为∠BOC+∠AOC=180º(平角定义),
    所以∠AOC是∠BOC的补角,
    ∠AOD=∠BOC(已知),
    所以∠BOC+∠BOD=180º.
    所以∠BOD是∠BOC的补角.
    所以∠BOC的补角有两个:∠BOD和∠AOC.
    因为∠AOC和∠BOC相邻,
    所以∠BOC的邻补角为:∠AOC.
    ∠BOC没有对顶角.
    【点睛】
    本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
    2、
    (1)证明见解析;
    (2).
    【分析】
    (1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;
    (2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.
    (1)
    证明:∵,,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)
    与互余的角有:.
    证明:∵,
    ∴,,
    ∴,.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,即.
    综上,可知与互余的角有:.
    【点睛】
    本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
    3、(1)90;(2)90°;(3)90°
    【分析】
    (1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
    (2)由,则,同(1)即可得出结果;
    (3)易证,同(1)得,,即可得出结果.
    【详解】
    解:(1),,三点在同一条直线上,



    平分,平分,
    ,,

    故答案为:90;
    (2),

    同(1)得:,,

    (3),

    同(1)得:,,

    【点睛】
    本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
    4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
    【分析】
    感知:读懂每一步证明过程及证明的依据,即可完成解答;
    探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
    应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
    【详解】
    感知
    ∵CE平分(已知),
    ∴ECD(角平分线的定义),
    ∵(已知),
    ∴ECD(等量代换),
    ∴(内错角相等,两直线平行).
    故答案为:ECD;ECD;内错角相等,两直线平行
    探究
    ∵CE平分,
    ∴,
    ∵,
    ∴,
    ∵.
    应用
    ∵BE平分∠DBC,
    ∴,
    ∵AE∥BC,
    ∴∠CBE=∠E,∠BAE+∠ABC=180゜,
    ∴∠E=∠ABE,
    ∵,
    ∴∠ABC=80゜


    【点睛】
    本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
    5、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
    【分析】
    由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
    【详解】
    证明:∵BE平分∠ABC(已知),
    ∴∠2=∠ABC(角平分线的定义),
    同理∠1=∠BCD,
    ∴∠1+∠2=(∠ABC+∠BCD),
    又∵AB∥CD(已知)
    ∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
    ∴∠1+∠2=90°.
    故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
    【点睛】
    本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
    6、(1)150°;(2)12或24;(3)存在,9秒、27秒
    【分析】
    (1)根据∠AOB=180°−∠AOM−∠BON计算即可.
    (2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
    (3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
    【详解】
    解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
    (2)当重合时,
    解得:
    当0≤t≤18时:


    4t+6t=120
    解得:
    当18≤t≤30时:则
    4t+6t=180+60,
    解得 t=24,
    答:当∠AOB达到60°时,t的值为6或24秒.
    (3) 当0≤t≤18时,由

    180−4t−6t=90,
    解得t=9,
    当18≤t≤30时,同理可得:
    4t+6t=180+90
    解得t=27.
    所以大于的答案不予讨论,
    答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
    【点睛】
    本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
    7、3.15
    【分析】
    根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
    【详解】
    解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
    故答案为:3.15.
    【点睛】
    本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
    8、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
    【分析】
    (1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
    (2)求出∠EOG=∠BOG即可.
    【详解】
    解:(1)∵OG⊥CD.
    ∴∠GOC=∠GOD=90°,
    ∵∠AOC=∠BOD=38°12′,
    ∴∠BOG=90°﹣38°12′=51°48′,
    (2)OG是∠EOB的平分线,
    理由:
    ∵OC是∠AOE的平分线,
    ∴∠AOC=∠COE=∠DOF=∠BOD,
    ∵∠COE+∠EOG=∠BOG+∠BOD=90°,
    ∴∠EOG=∠BOG,
    即:OG平分∠BOE.
    【点睛】
    本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
    9、(1)20°;(2)60°
    【分析】
    (1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
    (2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
    【详解】
    解:(1)∵∠AOE=40°,
    ∴∠AOF=180°-∠AOE=140°,
    ∵OC平分∠AOF,
    ∴∠AOC=∠AOF=70°,
    ∵OA⊥OB,
    ∴∠AOB=90°,
    ∴∠BOD=180°-∠AOB-∠AOC=20°;
    (2)∵∠BOE=30°,OA⊥OB,
    ∴∠AOE=60°,
    ∴∠AOF=180°-∠AOE=120°,
    ∵OC平分∠AOF,
    ∴∠AOC=∠AOF=60°,
    ∴∠COE=∠AOE+∠AOC=60°+60°=120°,
    ∴∠DOE=180°-∠COE=60°.
    【点睛】
    本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
    10、(1)见解析;(2)见解析.
    【分析】
    (1)利用两点之间距离线段最短,进而得出答案;
    (2)利用点到直线的距离垂线段最短,即可得出答案.
    【详解】
    解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,
    (2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
    【点睛】
    本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.

    相关试卷

    2021学年第十三章 相交线 平行线综合与测试综合训练题:

    这是一份2021学年第十三章 相交线 平行线综合与测试综合训练题,共33页。试卷主要包含了如图所示,下列说法错误的是,如图,,交于点,,,则的度数是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共31页。试卷主要包含了下列说法,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    数学第十三章 相交线 平行线综合与测试随堂练习题:

    这是一份数学第十三章 相交线 平行线综合与测试随堂练习题,共33页。试卷主要包含了如图木条a等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map