初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共26页。试卷主要包含了下列命题中,为真命题的是,下列说法中正确的是,如图,直线AB等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°2、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是( ).A.同位角相等,两直线平行. B.内错角相等,两直线平行.C.同旁内角互补,两直线平行. D.以上都不对.3、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )A.62° B.58° C.52° D.48°4、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°5、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等6、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )A.30° B.40° C.50° D.60°7、下列说法中正确的是( )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点8、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )A.55° B.125° C.65° D.135°9、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )A.95° B.105° C.115° D.125°10、下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有( )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)2、如图,直线AB与CD被直线AC所截得的内错角是 ___.3、在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.4、如图所示,过点P画直线a的平行线b的作法的依据是___________.5、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.三、解答题(10小题,每小题5分,共计50分)1、如图,平面上有三个点A、B、C.(1)根据下列语句按要求画图.①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);②连接CA、CD、CB;③过点C画CE⊥AD,垂足为点E;④过点D画DF∥AC,交CB的延长线于点F.(2)①在线段CA、CE、CD中,线段_________最短,依据是_________.②用刻度尺或圆规检验DF与AC的大小关系为_________.2、如图所示,从标有数字的角中找出:(1)直线CD和AB被直线AC所截构成的内错角.(2)直线CD和AC被直线AD所截构成的同位角.(3)直线AC和AB被直线BC所截构成的同旁内角.3、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.4、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)∴AD∥BC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3∴AB∥CD(_______)5、根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.证明:∵∠DAF=∠F(已知).∴AD∥BF( ),∴∠D=∠DCF( ).∵∠B=∠D(已知),∴( )=∠DCF(等量代换),∴AB∥DC( ).6、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A= ( ).∴AB∥ ( ).又∵∠1=∠2(已知),∴AB∥CD ( ).∴EF∥ ( ).∴∠FDG=∠EFD ( ).7、如图,直线AB、CD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.8、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F.9、已知,,三点在同一条直线上,平分,平分.(1)若,如图1,则 ;(2)若,如图2,求的度数;(3)若如图3,求的度数.10、已知:如图,中,点、分别在、上,交于点, ,.(1)求证:;(2)若平分,,求的度数. -参考答案-一、单选题1、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.2、A【分析】由作图可得同位角相等,根据平行线的判定可作答.【详解】解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.故选:A.【点睛】本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.3、A【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,∴,∴,故选:A.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.4、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.5、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.6、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,∵l1l2,∴∠1=∠CAB=60°.故选:D.【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.7、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.8、B【分析】先根据余角的定义求得,进而根据邻补角的定义求得即可.【详解】EO⊥AB,∠EOC=35°,,.故选:B.【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.9、B【分析】由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.【详解】解:由题意得∠ADF=45°,∵,∠B=30°,∴∠B+∠BDF=180°,∴∠BDF=180°﹣∠B=150°,∴∠ADB=∠BDF﹣∠ADF=105°.故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.10、A【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A.【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.二、填空题1、②③④【分析】根据平行线的判定方法分别判定得出答案.【详解】解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;故答案为:②③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.2、∠2与∠4【分析】根据内错角的特点即可求解.【详解】由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.3、两点之间线段最短【分析】根据两点之间线段最短即可得到答案.【详解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.4、内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,,(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.5、15°【分析】根据平行线的性质和三角板的特殊角的度数解答即可.【详解】解:如图:∵ABCD,∴∠BAD=∠D=30°,∵∠BAE=45°,∴∠α=45°﹣30°=15°,故答案为:15°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.三、解答题1、(1)见解析;(2)①;垂线段最短;②相等【分析】(1)根据题意作图即可;(2)根据垂线段最短以及圆规进行检验即可.【详解】(1)如图所示,即为所求;(2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;②用圆规检验DF=AC.【点睛】本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.2、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4【分析】根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.3、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.4、见解析【分析】由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD( 已知 ),∴∠1= ∠4 ( 角平分线定义 ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),∴AD∥BC(内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知,∴ ∠D =∠3,∴AB∥CD(内错角相等,两直线平行).故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【分析】根据平行线的性质与判定条件完成证明过程即可.【详解】证明:∵∠DAF=∠F(已知).∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等).∵∠B=∠D(已知),∴∠B=∠DCF(等量代换),∴AB∥DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.6、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【分析】利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论【详解】解:∵∠A=120°,∠FEC=120°(已知),∴∠A=∠FEC(等量代换),∴AB∥EF(同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),∴EF∥CD(平行于同一条直线的两直线互相平行),∴∠FDG=∠EFD(两直线平行,内错角相等),故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.7、【分析】根据、可得,OF是∠AOE的角平分线,可得,所以,再根据对顶角相等,即可求解.【详解】解:∵、,∴,∵OF是∠AOE的角平分线,∴,∴,∴,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.8、(1)证明见解析;(2)证明见解析.【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.9、(1)90;(2)90°;(3)90°【分析】(1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;(2)由,则,同(1)即可得出结果;(3)易证,同(1)得,,即可得出结果.【详解】解:(1),,三点在同一条直线上,,,,平分,平分,,,,故答案为:90;(2),,同(1)得:,,;(3),,同(1)得:,,.【点睛】本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.10、(1)见解析;(2)72°【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFE,∴EF//AB,∴∠ADE=∠1,又∵,∴∠ADE=∠B,∴DE//BC,(2)∵平分,∴∠ADE=∠EDC,∵DE//BC,∴∠ADE=∠B,∵∴∠5+∠ADE+∠EDC==180°,解得:,∴∠ADC=2∠B=72°,∵EF//AB,∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
相关试卷
这是一份数学七年级下册第十三章 相交线 平行线综合与测试同步练习题,共33页。试卷主要包含了如图,不能推出a∥b的条件是,如图,下列条件中能判断直线的是,如图,直线AB等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共28页。试卷主要包含了如图,直线b,如图所示,下列说法错误的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共26页。试卷主要包含了直线等内容,欢迎下载使用。

