沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共30页。试卷主要包含了如图,下列四个结论,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100° B.140° C.160° D.105°
3、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
5、若∠1与∠2是内错角,则它们之间的关系是 ( )
A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
6、如图,下列四个结论:①∠1=∠3;②∠B=∠5;③∠B+∠BAD=180º;④∠2=∠4;⑤∠D+∠BCD=180º.能判断AB∥CD的个数有 ( )
A.2个 B.3个 C.4个 D.5个
7、在下列各题中,属于尺规作图的是( )
A.用直尺画一工件边缘的垂线
B.用直尺和三角板画平行线
C.利用三角板画的角
D.用圆规在已知直线上截取一条线段等于已知线段
8、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
9、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
10、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )
A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______
2、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
3、如图,已知ABCD,,,则____.
4、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.
5、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.
三、解答题(10小题,每小题5分,共计50分)
1、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.
2、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.
3、完成下列说理过程(括号中填写推理的依据):
已知:如图,直线AB,CD相交于点O,.求证:.
证明:,
.( ① )
,
.
直线AB,CD相交于点O,
.
.
= ② .( ③ )
直线相交于,
.
④ .( ⑤ )
.
4、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.
(1)如图1,若,试说明;
(2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
①,当t为何值时,直线OE平分;
②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
5、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
6、按下面的要求画图,并回答问题:
(1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东 °方向上(精确到1°),O、M两点的距离是 cm.
(2)根据以下语句,在“图②”上边的空白处画出图形.
画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点P到AB的距离是 cm.
7、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
8、如图,AE=AF,以AE为直径作⊙O交EF点D,过点D作BC⊥AF,交AE的延长线于点B.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AE=5,AC=4,求BE的长.
9、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.
解:∵,
∴( )
∵平分,平分.
∴, ( )
∵
∴( )
∵
∴( )
10、如图,方格纸中每个小正方形的边长都是1.
(1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.
(2)求四边形PMAN的面积.
-参考答案-
一、单选题
1、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
2、B
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
3、B
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
4、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
5、D
【分析】
根据内错角角的定义和平行线的性质判断即可.
【详解】
解:∵只有两直线平行时,内错角才可能相等,
∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
三种情况都有可能,
故选D.
【点睛】
本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
6、A
【分析】
根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.
【详解】
解:①∵,∴,无法推出;
②∵,∴;
③∵,∴,无法推出;
④∵,∴;
⑤∵∴,无法推出,
综上所述,能判断的是:②④,有2个,
故选:A.
【点睛】
题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
7、D
【分析】
根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.
【详解】
解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;
B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;
C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;
D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;
故选D.
【点睛】
本题主要考查了尺规作图的定义,解题的关键在于熟知定义.
8、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
9、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
10、B
【分析】
由对顶角可知∠1=40°,故可知射线OB的方位角;
【详解】
解:由对顶角可知,∠1=40°
所以射线OB的方位角是南偏西40°
故答案为B
【点睛】
本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
二、填空题
1、0<l≤2
【分析】
根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.
【详解】
解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,
∵直线外一点与直线上各点连线的所有线段中,垂线段最短
∴点P到直线a的距离l小于等于2,
故答案为:0<l≤2.
【点睛】
本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.
2、
【分析】
先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.
【详解】
解:,
,
是的平分线,
,
,
故答案为:.
【点睛】
本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.
3、95°
【分析】
过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
【详解】
解:如图,过点E作EF∥AB,
∵EF//AB,
∴∠BEF+∠ABE=180°,
∵∠ABE=120°,
∴∠BEF=180°-∠ABE=180°-120°=60°,
∵EF//AB,AB//CD,
∴EF//CD,
∴∠FEC=∠DCE,
∵∠DCE=35°,
∴∠FEC=35°,
∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
故答案为:95°
【点睛】
本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
4、110︒度
【分析】
根据平行线的性质和角平分线的性质可得结论.
【详解】
解:∵AD//BC
∴
∵CE平分∠DCF
∴
∴
∵AB//CD
∴
∵AD//BC
∴
∴
故答案为:110︒
【点睛】
本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.
5、
【分析】
根据角的表示和邻补角的性质计算即可;
【详解】
∠1还可以用表示;
∵∠1=62°,,
∴;
故答案是:;.
【点睛】
本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.
三、解答题
1、61.5°
【分析】
由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.
【详解】
解:∵OP平分∠AOC,∠AOC=38°,
∴∠AOP=∠COP=∠AOC=×38°=19°,
∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,
∵ON平分∠POB
∴∠PON=∠BOP=×161°=80.5°,
∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.
【点睛】
本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.
2、(1)见解析;(2)见解析.
【分析】
(1)利用两点之间距离线段最短,进而得出答案;
(2)利用点到直线的距离垂线段最短,即可得出答案.
【详解】
解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,
(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
【点睛】
本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
3、①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等
【分析】
根据证明过程判断从上一步到下一步的理由即可.
【详解】
证明:,
.(①角平分线定义)
,
.
直线AB,CD相交于点O,
.
.
=②.(③等角的余角相等)
直线相交于,
.
④.(⑤同角的补角相等)
.
故答案为:①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等
【点睛】
本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.
4、(1)见解析;(2)①或;②
【分析】
(1)根据垂直的性质即可求解;
(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
【详解】
解:(1)∵,
∴,
∴.
(2)①∵OB平分,,
∴.
情况1:当OE平分时,
则旋转之后,
∴OB旋转的角度为,
∴,.
情况2:当OF平分时,同理可得,OB旋转的角度为,
∴,.
综上所述,或.
②∵,
∴OP在内部,如图所示,
由题意知,,
∴,∵OM平分,
∴,
∴,
∴.
【点睛】
此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
5、∠2=115°,∠3=65°,∠4=115°
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
6、(1)图见解析,53,5;(2)图见解析,3.
【分析】
(1)先根据点的移动得到点,再连接点可得线段,然后测量角的度数和线段的长度即可得;
(2)先画出线段,再根据垂线的尺规作图画出垂线,然后测量的长即可得.
【详解】
解:(1)如图,线段即为所求.
此时点在点的北偏东方向上,、两点的距离是,
故答案为:53,5;
(2)如图,线段和垂线即为所求.
测得点到的距离是,
故答案为:3.
【点睛】
本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.
7、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
8、(1)BC与⊙O相切,见解析;(2).
【分析】
(1)连接OD,根据等腰三角形的性质得到∠OED=∠ODE,∠OED=∠F,求得∠ODE=∠F,根据平行线的判定得到OD∥AC,根据平行线的性质得到∠ODB=∠ACB,推出OD⊥BC,根据切线的判定定理即可得到结论;
(2)根据平行线分线段成比例定理得到,于是得到结论.
【详解】
解:(1)BC与⊙O相切,
理由:连接OD,
∵OE=OD,
∴∠OED=∠ODE,
∵AE=AF,
∴∠OED=∠F,
∴∠ODE=∠F,
∴OD∥AC,
∴∠ODB=∠ACB,
∵DC⊥AF,
∴∠ACB=90°,
∴∠ODB=90°,
∴OD⊥BC,
∵OD是⊙O的半径,
∴BC与⊙O相切;
(2)∵OD∥AC,
∴,
∵AE=5,AC=4,
即,
∴BE=.
【点睛】
本题考查等腰三角形的性质、切线的判定与性质、平行线的判定与性质等知识,是重要考点,掌握相关知识是解题关键.
9、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【分析】
利用平行线的性质定理和判定定理解答即可.
【详解】
解:∵AB∥CD,
∴∠AME=∠CNE.(两直线平行,同位角相等),
∵MP平分∠AME,NQ平分∠CNE,
∴∠1=∠AME,=∠CNE.( 角平分线的定义),
∵∠AME=∠CNE,
∴∠1=∠2.(等量代换),
∵∠1=∠2,
∴MP∥NQ.(同位角相等,两直线平行).
故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【点睛】
此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
10、(1)见解析;(2)18.
【分析】
(1)直接利用网格结合平行线的判定方法得出答案;
(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.
【详解】
解:(1)如图所示:点M,点N即为所求;
(2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.
【点睛】
本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共32页。试卷主要包含了下列关于画图的语句正确的是.,如图,直线AB等内容,欢迎下载使用。
这是一份数学第十三章 相交线 平行线综合与测试习题,共28页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共31页。试卷主要包含了直线等内容,欢迎下载使用。

