年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选)

    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选)第1页
    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选)第2页
    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共29页。试卷主要包含了下列说法等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列命题中,为真命题的是( )
    A.若,则 B.若,则
    C.同位角相等 D.对顶角相等
    2、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为(  )

    A.140° B.100° C.80° D.40°
    3、如图,直线a、b被直线c所截,下列说法不正确的是( )

    A.1与5是同位角 B.3与6是同旁内角
    C.2与4是对顶角 D.5与2是内错角
    4、在如图中,∠1和∠2不是同位角的是(  )
    A. B.
    C. D.
    5、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是(  )

    A.38° B.42° C.48° D.52°
    6、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
    A.① B.②和③ C.④ D.①和④
    7、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )

    A.40° B.50° C.140° D.150°
    8、下列说法:
    ①和为180°且有一条公共边的两个角是邻补角;
    ②过一点有且只有一条直线与已知直线垂直;
    ③同位角相等;
    ④经过直线外一点,有且只有一条直线与这条直线平行,
    其中正确的有( )
    A.0个 B.1个 C.2个 D.3个
    9、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设(  )
    A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
    10、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于(  )

    A.60° B.90° C.120° D.150°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.

    2、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:

    证明:∵AB被直线GH所截,
    ∴_____

    ∴______
    ∴______________(________)(填推理的依据).
    3、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____

    4、如图,BD平分,,,要使,则______°.

    5、如图,若,被所截,则与______________是内错角.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,∠AGB=∠EHF,∠C=∠D.
    (1)求证:BD∥CE;
    (2)求证:∠A=∠F.

    2、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.

    证明:∵AD∥BC(已知),
    ∴∠3=   (    ).
    ∵∠3=∠4(已知),
    ∴∠4=   (    ).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(    ).
    即∠BAF=   .
    ∴∠4=∠BAF.(    ).
    ∴AB∥CD(    ).
    4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.

    (1)求∠BOC的度数;
    (2)试说明OE平分∠AOC.
    3、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?

    4、完成下列填空:
    已知:如图,,,CA平分;
    求证:.
    证明:∵(已知)
    ∴________( )
    ∵(已知)
    ∴________( )
    又∵CA平分(已知)
    ∴________( )
    ∵(已知)
    ∴_____________=30°( )

    5、根据解答过程填空(写出推理理由或数学式):
    如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF(    ),
    ∴∠D=∠DCF(    ).
    ∵∠B=∠D(已知),
    ∴(    )=∠DCF(等量代换),
    ∴AB∥DC(    ).

    6、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.

    (1)∵∠1=∠2(已知)
    ∴ CD( )
    ∴∠ABD+∠CDB = ( )
    (2)∵∠BAC =65°,∠ACD=115°,( 已知 )
    ∴∠BAC+∠ACD=180° (等式性质)
    ∴ABCD ( )
    (3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
    ∴∠ABD=∠CDF=90°( 垂直的定义)
    ∴ (同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = ( )
    7、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣ (邻补角定义)
    =180°﹣ °
    = °
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF( )
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC( )
    =180°﹣90°﹣ °
    = °

    8、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
    (1)若∠MAB=∠QCB=20°,则B的度数为 度.
    (2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
    ①依题意在图1中补全图形;
    ②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
    (3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系

    9、如图,在中,平分交于D,平分交于F,已知,求证:.

    10、如图,直线交于点,于点,且的度数是的4倍.

    (1)求的度数;
    (2)求的度数.

    -参考答案-
    一、单选题
    1、D
    【分析】
    利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
    【详解】
    解:A、若,则或,故A错误.
    B、当时,有,故B错误.
    C、两直线平行,同位角相等,故C错误.
    D、对顶角相等,D正确.
    故选:D .
    【点睛】
    本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
    2、B
    【分析】
    根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
    【详解】
    解:∵∠AOE+∠BOE=180°,
    ∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
    又∵OE平分∠AOC,
    ∴∠AOE=∠COE=40°,
    ∴∠BOC=∠BOE﹣∠COE
    =140°﹣40°
    =100°,
    故选:B.
    【点睛】
    本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
    3、D
    【分析】
    根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
    【详解】
    解:A、∠1与∠5是同位角,故本选项不符合题意;
    B、∠3与∠6是同旁内角,故本选项不符合题意.
    C、∠2与∠4是对顶角,故本选项不符合题意;
    D、∠5与2不是内错角,故本选项符合题意.
    故选:D.
    【点睛】
    本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
    4、D
    【分析】
    同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.
    【详解】
    解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.
    故选:D.
    【点睛】
    本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.
    5、A
    【分析】
    利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
    【详解】
    解:∵AB⊥AC,∠1=52°,
    ∴∠B=90°﹣∠1
    =90°﹣52°
    =38°
    ∵a∥b,
    ∴∠2=∠B=38°.
    故选:A.
    【点睛】
    本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
    6、A
    【分析】
    利用平行线的性质逐一判断即可.
    【详解】
    ①是平行线的性质,故符合题意;
    ②是平行线的判定,故不符合题意;
    ③是平行线的判定,故不符合题意;
    ④是平行线的判定,故不符合题意;
    故选:A.
    【点睛】
    本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
    7、D
    【分析】
    由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
    【详解】
    解:∵拐弯前、后的两条路平行,
    ∴∠B=∠C=150°(两直线平行,内错角相等).
    故选:D.
    【点睛】
    本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
    8、B
    【分析】
    根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
    【详解】
    解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;

    ②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
    ③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;

    ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
    其中正确的有④一共1个.
    故选择B.
    【点睛】
    本题考查基本概念的理解,掌握基本概念是解题关键.
    9、C
    【分析】
    用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
    【详解】
    解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
    用反证法时应假设结论不成立,
    即假设a与c不平行(或a与c相交).
    故答案为:C.
    【点睛】
    此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
    10、C
    【分析】
    先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
    【详解】
    解:∵AB∥CD,
    ∴∠1=∠CEF,
    又∵∠2+∠CEF=180°,
    ∴∠2+∠1=180°,
    ∵∠2=2∠1,
    ∴3∠1=180°,
    ∴∠1=60°,
    ∴∠2=120°,
    故选C.

    【点睛】
    本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
    二、填空题
    1、> 3 2 垂线段
    【分析】
    根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.
    【详解】
    解:∵∠AOB=90°,
    ∴AO⊥BO,AB>BO,
    ∵OA=3cm,OB=2cm,
    ∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,
    故答案为:>,3,2,垂线段.
    【点睛】
    本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.
    2、3 180° AB CD 同旁内角互补,两直线平行
    【分析】
    先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
    【详解】
    证明:∵AB被直线GH所截,∠1=112°,
    ∴∠1=∠3=112°
    ∵∠2=68°,
    ∴∠2+∠3=180°,
    ∴AB∥CD,(同旁内角互补,两直线平行)
    故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
    【点睛】
    本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
    3、
    【分析】
    先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
    【详解】
    解:

    ∠EFG+∠EGD=150°,
    ∠EGD=
    折叠







    故答案为:.
    【点睛】
    本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
    4、20
    【分析】
    利用角平分线的定义求解再由可得再列方程求解即可.
    【详解】
    解: BD平分,,

    由,
    而,

    解得:
    所以当时,,
    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.
    5、
    【分析】
    根据内错角的定义填空即可.
    【详解】
    解:与是内错角,
    故答案为
    【点睛】
    本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    三、解答题
    1、(1)证明见解析;(2)证明见解析.
    【分析】
    (1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
    (2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
    【详解】
    证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
    ∴∠1=∠EHF,
    ∴BD∥CE;
    (2)∵BD∥CE,
    ∴∠D=∠2,
    ∵∠D=∠C,
    ∴∠2=∠C,
    ∴AC∥DF,
    ∴∠A=∠F.

    【点睛】
    本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
    2、
    (1)∠BOC=60°
    (2)见解析
    【分析】
    (1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
    (2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
    【详解】
    (1)∵∠AOB=∠BOC+∠AOC=180°,
    又∠BOC:∠AOC=1:2,
    ∴∠AOC=2∠BOC,
    ∴∠BOC+2∠BOC=180°,
    ∴∠BOC=60°;
    (2)∵OD平分∠BOC,
    ∴∠BOD=∠DOC,
    ∵∠DOC+∠COE=90°,∠AOB是平角,
    ∴∠AOE+∠BOD=90°,
    ∴∠AOE=∠COE
    即OE平分∠AOC.
    【点睛】
    本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
    3、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
    【分析】
    根据对顶角和邻补角的定义求解即可.
    【详解】
    解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
    根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
    【点睛】
    此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
    4、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等
    【分析】
    由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.
    【详解】
    证明:∵AB∥CD,(已知)
    ∴∠B+∠BCD=180°,(两直线平行同旁内角互补)
    ∵∠B=120°(已知),
    ∴∠BCD=60°.
    又CA平分∠BCD(已知),
    ∴∠2=30°,(角平分线定义).
    ∵AB∥CD(已知),
    ∴∠1=∠2=30°.(两直线平行内错角相等).
    故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.
    【点睛】
    此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
    5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
    【分析】
    根据平行线的性质与判定条件完成证明过程即可.
    【详解】
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF(内错角相等,两直线平行),
    ∴∠D=∠DCF(两直线平行,内错角相等).
    ∵∠B=∠D(已知),
    ∴∠B=∠DCF(等量代换),
    ∴AB∥DC(同位角相等,两直线平行).
    故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.

    【点睛】
    本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
    6、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
    【分析】
    (1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
    (2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
    (3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
    【详解】
    解:(1)∵∠1=∠2 (已知)
    ∴AB∥CD(内错角相等,两直线平行)
    ∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
    故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
    (2)∵∠BAC =65°,∠ACD=115°,(已知)
    ∴∠BAC+∠ACD=180° (等式性质 )
    ∴AB∥CD (同旁内角互补,两直线平行)
    故答案为:同旁内角互补,两直线平行;
    (3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
    ∴∠ABD=∠CDF=90°(垂直的定义)
    ∴AB ∥CD(同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = 125°.(两直线平行,同旁内角互补)
    故答案为:AB;CD;125°;两直线平行,同旁内角互补.
    【点睛】
    本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    7、角平分线的定义,平角的定义,
    【分析】
    先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
    【详解】
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣(邻补角定义)
    =180°﹣40°
    =140°
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF(角平分线的定义)
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
    =180°﹣90°﹣70°
    =20°
    故答案为:角平分线的定义,平角的定义,
    【点睛】
    本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    8、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
    【分析】
    (1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
    (2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
    (3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
    【详解】
    解:(1)作 ,

    ∵MN//PQ,
    ∴,
    ∴ ,
    ∴ ;
    (2)①如图所示,

    ②过点F作 ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ;
    (3)延长AE交PQ于点G,

    设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
    ∴∠BCQ=180°−my°,
    由(1)知,∠ABC=mx°+180°−my°,
    ∴y°−x°=,
    ∵MNPQ,
    ∴∠MAE=∠DGP=x°,
    则∠CDA=∠DCP−∠DGC
    =y°−x°
    =,
    即m∠CDA+∠ABC=180°.
    【点睛】
    本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
    9、见解析
    【分析】
    根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
    【详解】
    证明:(已知),
    (同位角相等,两直线平行),
    (两直线平行,同位角相等),
    平分,平分(已知),
    ,(角平分线的定义),
    (等量代换).
    (同位角相等,两直线平行).
    【点睛】
    此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
    10、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°
    【分析】
    (1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;
    (2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.
    【详解】
    解:(1)∵的度数是的4倍,
    ∴∠BOD=4∠AOD,
    又∵∠AOD+∠BOD=180°,
    ∴5∠AOD=180°,
    ∴∠AOD=36°,
    ∴∠BOD=144°;
    (2)∵OE⊥CD,
    ∴∠DOE=90°,
    ∴∠BOE=∠BOD-∠DOE=54°.
    【点睛】
    本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共30页。试卷主要包含了下列说法中正确的有,下列说法等内容,欢迎下载使用。

    数学第十三章 相交线 平行线综合与测试课时训练:

    这是一份数学第十三章 相交线 平行线综合与测试课时训练,共27页。试卷主要包含了如图,∠1与∠2是同位角的是等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试复习练习题:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试复习练习题,共28页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map