开学活动
搜索
    上传资料 赚现金

    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合练习练习题(无超纲)

    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合练习练习题(无超纲)第1页
    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合练习练习题(无超纲)第2页
    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合练习练习题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共20页。试卷主要包含了下列说法正确的是,若,则整数a的值不可能为,下列各式中正确的是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、的值等于(    A. B.-2 C. D.22、9的平方根是(  )A.±3 B.-3 C.3 D.3、4的平方根是(  )A.±2 B.﹣2 C.2 D.44、在3.14,中,无理数有(      A.1个 B.2个 C.3个 D.4个5、下列说法正确的是(  A.0.01是0.1的平方根 B.小于0.5C.的小数部分是D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近16、一个正数的两个平方根分别是2a,则a的值为(    A.1 B.﹣1 C.2 D.﹣27、若,则整数a的值不可能为(    A.2 B.3 C.4 D.58、已知2m﹣1和5﹣ma的平方根,a是(    A.9 B.81 C.9或81 D.29、下列各式中正确的是(    A. B. C. D.10、化简计算的结果是(    A.12 B.4 C.﹣4 D.﹣12第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:_____2(填“>”或“<”或“=”)2、已知在两个连续的整数之间,则的平方根为______.3、已知xy是实数,且+(y-3)2=0,则xy的立方根是__________.4、实数16的平方根是___,=___,5的立方根记作___.5、计算:__________.三、解答题(10小题,每小题5分,共计50分)1、计算:2、计算:(1)(2)+(23、计算:(1) (2)4、观察下列等式:第1个等式:12=13第2个等式:(1+2)2=13+23第3个等式:(1+2+3)2=13+23+33第4个等式:(1+2+3+4)2=13+23+33+43……按照以上规律,解决下列问题:(1)写出第5个等式:__________________;(2)写出第nn为正整数)个等式:__________________(用含n的等式表示);(3)利用上述规律求值:5、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?6、计算:7、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数ab满足,求ab的值.(3)将化为均为实数)的形式,(即化为分母中不含的形式).8、求下列各式中的x(1)(2)9、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:(1)写出一个假分式为:    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.10、计算: -参考答案-一、单选题1、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.2、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.【详解】解:∵∴4的平方根是故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.4、C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;∴无理数有三个,故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C.【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.6、D【分析】根据正数有两个平方根,且互为相反数,即可求解.【详解】解:根据题意得:解得:故选:D【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.7、D【分析】首先确定的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,即又∵∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.8、C【分析】分两种情况讨论求解:当2m﹣1与5﹣ma的两个不同的平方根和当2m﹣1与5﹣ma的同一个平方根.【详解】解:若2m﹣1与5﹣m互为相反数,则2m﹣1+5﹣m=0,m=﹣4,∴5﹣m=5﹣(﹣4)=9,a=92=81,若2m﹣1=5﹣mm=2,∴5﹣m=5﹣2=3,a=32=9,故选C.【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.9、D【分析】由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;没有意义,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.10、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】解:故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.二、填空题1、>【分析】根据即可得出答案.【详解】故答案为:>.【点睛】本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.2、【分析】先判断,得到的值,然后进行相加,再求平方根即可.【详解】解:由题意,的平方根为故答案为:【点睛】本题考查了估算无理数的大小,以及平方根的定义,正确得出是解题关键.3、【分析】根据二次根式和平方的非负性,可得 ,即可求解.【详解】解:根据题意得:解得:故答案为:【点睛】本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.4、            【分析】分别根据平方根、算术平方根、立方根的定义依次可求解.【详解】解:实数16的平方根是=5的立方根记作故答案为:【点睛】本题主要考查了立方根、平方根、算术平方根的定义.用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.5、2【分析】直接利用立方根、绝对值化简得出答案.【详解】解:原式故答案为:2.【点睛】本题主要考查了实数的运算,解题的关键是正确化简.三、解答题1、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.2、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式(2)原式【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.3、(1)5;(2)【分析】(1)分别求解算术平方根与立方根,再进行加减运算即可;(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.【详解】解:(1)(2)【点睛】本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.4、(1)(1+2+3+4+5)2=13+23+33+43+53(2)(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3(3)265【分析】(1)根据前几个等式的变化规律解答即可;(2)根据前几个等式的变化规律写出第n个等式即可;(3)根据变化规律和平方差公式进行计算即可.(1)解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53故答案为:(1+2+3+4+5)2=13+23+33+43+53(2)解:根据题意,第n个等式为(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3故答案为:(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3(3)解:由(2)中(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3知,(1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,(1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,①-②得:(1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203=(1+2+3+4+5+…+20+1+2+3+4+5+…+10)=265.【点睛】本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.5、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为(2)当x=5时,空白部分面积为(3)根据题意得,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.6、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.7、(1);(2);(3)【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∴原式(2)ab是正整数(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.8、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:两边开平方得:(2)两边开立方得:等式两边同时减去1得:【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.9、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2)故答案为:(3)∵x2=±1或x2=±2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.10、【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式=1-8+4+=【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试单元测试同步训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试单元测试同步训练题,共23页。试卷主要包含了如果a,的值等于,在0.1010010001…,16的平方根是,下列计算正确的是.等内容,欢迎下载使用。

    2021学年第十二章 实数综合与测试课时作业:

    这是一份2021学年第十二章 实数综合与测试课时作业,共20页。试卷主要包含了10的算术平方根是,下列各组数中相等的是,下列说法,的算术平方根是,关于的叙述,错误的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共17页。试卷主要包含了的算术平方根是,下列说法正确的是,下列四个数中,最小的数是,化简计算﹣的结果是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map