搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数单元测试试卷

    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数单元测试试卷第1页
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数单元测试试卷第2页
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数单元测试试卷第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十二章 实数综合与测试单元测试同步达标检测题

    展开

    这是一份2020-2021学年第十二章 实数综合与测试单元测试同步达标检测题,共1页。试卷主要包含了三个实数,2,之间的大小关系,关于的叙述,错误的是,4的平方根是,下列计算正确的是.,若 ,则,下列各式中,化简结果正确的是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、的算术平方根是(    A.2 B. C. D.2、估计的值应该在(    ).A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间3、的值等于(    A. B.-2 C. D.24、三个实数,2,之间的大小关系(  )A.>2 B.>2> C.2> D.<2<5、关于的叙述,错误的是(  )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点6、4的平方根是(  )A.2 B.﹣2 C.±2 D.没有平方根7、下列计算正确的是(    ).A. B. C. D.8、若 ,则    A. B. C. D.9、下列各式中,化简结果正确的是(    A. B. C. D.10、一个正方体的体积是5m3,则这个正方体的棱长是(  )A.m B.m C.25m D.125m第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对()放入其中,就得到一个数为2-3+1,如把(3,2)放入其中,就得到32-32+1=4,若把(-3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是___________.2、实数在数轴上的位置如图所示,则化简的结果为________.3、如果,那么=_____.4、比较大小:2______的相反数是______.5、绝对值不大于4且不小于的整数分别有______.三、解答题(10小题,每小题5分,共计50分)1、已知abcd是有理数,对于任意,我们规定:例如:根据上述规定解决下列问题:(1)_________;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值.2、求下列各数的算术平方根:(1)0.64            (2)3、计算:4、计算:5、解方程:(1)x2=81;(2)(x﹣1)3=27.6、有理数ab如果满足,那么我们定义ab为一组团结数对,记为<ab>.例如:,因为,所以,则称为一组团结数对,记为<>.根据以上定义完成下列各题:(1)找出2和2,1和3,-2和这三组数中的团结数对,记为        (2)若<5,x>成立,则x的值为        (3)若<ab>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且bb左右两个相邻数的和是567,求a的值.7、已知是正数的两个平方根,且,求值,及的值.8、已知的平方根是的立方根是2,的整数部分,求的算术平方根.9、求下列各式中的x(1)(2)10、计算: -参考答案-一、单选题1、A【分析】根据算术平方根的定义即可求出结果.【详解】解:=4,4的算术平方根是2.故选:A【点睛】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.2、C【分析】根据25<29<36估算出的大小,然后可求得的范围.【详解】解:∵25<29<36,,即5<<6.3、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.4、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.5、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.6、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:故选:C.【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.7、D【分析】由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.【详解】解:没有意义,故A不符合题意;,故B不符合题意;,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.8、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.【详解】解:(舍去),故选:B.【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.9、D【分析】根据实数的运算法则依次对选项化简再判断即可.【详解】A,化简结果错误,与题意不符,故错误.B,化简结果错误,与题意不符,故错误.C,化简结果错误,与题意不符,故错误.D,化简结果正确,与题意相符,故正确.故选:D    【点睛】本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.10、B【分析】根据正方体的体积公式:Va3,把数据代入公式解答.【详解】解:××=5(立方米),答:这个正方体的棱长是米,故选:B.【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟记公式.二、填空题1、5【分析】由魔术盒的性质可知m=(-3)2-32+1=4,故(4,4)在魔术盒中的数字为(4)2-34+1=5.【详解】将(-3,2)代入2-3+1有(-3)2-32+1=4m=4再将(4,4)代入2-3+1有(4)2-34+1=5.故答案为:5.【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可.2、1【分析】由数轴可知,则有,然后问题可求解.【详解】解:由数轴可知:故答案为1.【点睛】本题主要考查数轴、算术平方根及整式的加减运算,熟练掌握数轴、算术平方根及整式的加减运算是解题的关键.3、【分析】本题可利用立方根的定义直接求解.【详解】故填:【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.4、    ##【分析】(1)将2化为即可判断;(2)在的前面添“”号,即可得到其相反数.【详解】(1)∵故答案为:(2)故答案为:【点睛】本题是实数的比较大小与求解相反数的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.在任意一个数前面添上“”号,新的数就表示原数的相反数.5、4【分析】根据绝对值的意义及实数的大小比较可直接进行求解.【详解】解:由绝对值不大于4且不小于的整数分别有4和故答案为4和【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.三、解答题1、(1)-5(2)(3)k=1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.(1)解:(2)解:即:(3)解:即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5.所以k=1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.2、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3、【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式=1-8+4+=【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.4、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:=1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.5、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).6、(1)<2,2>,<-2,(2)(3)【解析】(1)和2是一组团结数,即为<>,和3不是一组团结数,是一组团结数,即为<>,故答案为:<>,<>;(2)若<5,x>成立,则故答案为:(3)b左面相邻的数为xb为-3xb右面相邻的数为9x由题意可得 解得 x=81 所以 b=-243 由于<ab>成立,则a-243=-243a,解得【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.7、【分析】根据正数的平方根有2个,且互为相反数,以及求出的值即可.【详解】解:因为是正数的两个平方根,可得:代入,解得:所以所以【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.8、【分析】直接利用平方根以及立方根和估算无理数的大小得出abc的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c的整数部分,c=4,a+2b+c=5+4+4=13,a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出abc的值是解题关键.9、(1)(2)【分析】(1)根据平方根定义开方,求出两个方程的解即可;(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.(1)开平方得, 解得,(2)移项得,方程两边同除以8,得,开立方,得,【点睛】本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.10、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键. 

    相关试卷

    沪教版 (五四制)第十二章 实数综合与测试单元测试练习:

    这是一份沪教版 (五四制)第十二章 实数综合与测试单元测试练习,共20页。试卷主要包含了下列说法中,正确的是,估计的值应该在.,若,那么,若,则的值为,下列语句正确的是等内容,欢迎下载使用。

    2020-2021学年第十二章 实数综合与测试同步练习题:

    这是一份2020-2021学年第十二章 实数综合与测试同步练习题,共18页。试卷主要包含了a为有理数,定义运算符号▽,对于两个有理数,如果a,100的算术平方根是,下列各组数中相等的是等内容,欢迎下载使用。

    初中沪教版 (五四制)第十二章 实数综合与测试单元测试达标测试:

    这是一份初中沪教版 (五四制)第十二章 实数综合与测试单元测试达标测试,共21页。试卷主要包含了的算术平方根是,下列说法中正确的有,若,那么,下列说法正确的是,9的平方根是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map