年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题训练试题(含解析)

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题训练试题(含解析)第1页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题训练试题(含解析)第2页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题训练试题(含解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十二章 实数综合与测试习题

    展开

    这是一份2020-2021学年第十二章 实数综合与测试习题,共1页。试卷主要包含了估计的值应该在.,10的算术平方根是,3的算术平方根为,下列说法中,正确的是,下列等式正确的是,下列语句正确的是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、估计的值在(    A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间2、在, 0, , 0.010010001……, , -0.333…,   3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有(      A.2个 B.3个 C.4个 D.5个3、﹣π,﹣3,的大小顺序是(  )A. B.C. D.4、估计的值应该在(    ).A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间5、10的算术平方根是(    A.10 B. C. D.6、3的算术平方根为(    A. B.9 C.±9 D.±7、下列说法中,正确的是(    A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.任何数的绝对值都是正数D.和为0的两个数互为相反数8、下列等式正确的是(   )A. B. C. D.9、下列语句正确的是(  )A.8的立方根是2 B.﹣3是27的立方根C.的立方根是± D.(﹣1)2的立方根是﹣110、下列各式中正确的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、规定了一种新运算:,计算:(3*4)*5=___.2、已知(xy+3)2+=0,则(x+y2021=___.3、已知xy满足关系式=0,则xy的算术平方根为______.4、给定二元数对(pq),其中或1,或1.三种转换器ABC对(pq)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为________;(2)在图2所示的“①—C—②”组合转换器中,若当输入时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).5、比较大小:2______的相反数是______.三、解答题(10小题,每小题5分,共计50分)1、计算:2、求下列各数的平方根:(1)121            (2)            (3)(-13)2                 (4) 3、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.4、计算:(1)(2)5、(1)计算:﹣32﹣(2021)0+|﹣2|﹣(﹣2×(﹣);(2)解方程:=﹣1.6、先化简:,再从中选取一个合适的整数代入求值.7、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记Fm,若Fm)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722)不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数st都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且Ft)=4,规定:k,求所k的值.8、已知的平方根是的立方根是2,的整数部分,求的算术平方根.9、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).解:请你帮小马同学将上面的作业做完.10、计算  -参考答案-一、单选题1、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.【详解】故选:C.【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.2、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=1,=2,,3,∴无理数有,2.010101…(相邻两个1之间有1个0)共4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、B【分析】根据实数的大小比较法则即可得.【详解】解:故选:B.【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.4、C【分析】根据25<29<36估算出的大小,然后可求得的范围.【详解】解:∵25<29<36,,即5<<6.5、B【分析】直接利用算术平方根的求法即可求解.【详解】解:的算术平方根是故选:B.【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.6、A【分析】利用算术平方根的定义求解即可.【详解】3的算术平方根是故选:A.【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.7、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A错误.B.∵数轴上的点也可以表示无理数.∴B错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.D.∵和为0的两个数互为相反数.∴D正确.故选:D.【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.8、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意;    C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).9、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A、8的立方根是2,故A正确.B、3是27的立方根,故B错误.C、的立方根是,故C错误.D、(﹣1)2的立方根是1,故D错误.故选:A.【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.10、D【分析】由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;没有意义,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.二、填空题1、【分析】根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.【详解】解:(3*4)*5=故答案为【点睛】本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.2、1【分析】由(xy+3)2+=0,可得方程组,再解方程组,代入代数式计算即可得到答案.【详解】解:xy+3)2+=0, 解得: 故答案为:1【点睛】本题考查的是偶次方与算术平方根的非负性,掌握“若”是解题的关键.3、4【分析】直接利用算术平方根以及偶次方的性质得出xy的值,进而得出答案.【详解】解:∵x+4=0,y-2=0,解得:x=-4,y=2,xy=(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出xy的值是解题关键.4、1    A    A    【分析】(1)利用转换器C的规则即可求出答案.(2)利用转换器ABC的规则,写出一组即可.【详解】(1)解:利用转换器C的规则可得:输出结果为1.(2)解:当输入时,若①对应A,此时经过AC输出结果为(1,0),②对应A,输出结果恰好为0.当输入时,若①对应A,此时经过AC输出结果为(0,1),②对应A,输出结果恰好为0.故答案为:1;AA【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.5、    ##【分析】(1)将2化为即可判断;(2)在的前面添“”号,即可得到其相反数.【详解】(1)∵故答案为:(2)故答案为:【点睛】本题是实数的比较大小与求解相反数的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.在任意一个数前面添上“”号,新的数就表示原数的相反数.三、解答题1、1【分析】分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.【详解】解:【点睛】本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.2、 (1)±11; (2) ; (3)±13; (4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2),因为, 所以的平方根是(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.3、(1);(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x∴2x﹣2+6﹣3x=0,x=4,∴2x﹣2=6,a=36,a﹣4b的算术平方根是4,a﹣4b=16,∴36-4b=16b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.4、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.5、(1)-7;(2)x=9.【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可.【详解】解:(1)原式=﹣9﹣1+2﹣9×(﹣=﹣9﹣1+2+1=﹣7;(2)去分母得:2x﹣3(1+x)=﹣12,去括号得:2x﹣3﹣3x=﹣12,移项得:2x﹣3x=﹣12+3,合并同类项得:﹣x=﹣9,系数化1得:x=9.【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.6、∴或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出aby的值是解答的关键.7.2x-2,2.【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:原式=x取整数,x可取2,x=2时,原式=2×2-2=2.【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.7、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.【详解】(1),9是整数,∴9981是“运算数”,不是整数,∴2314不是“运算数”;(2)为整数,可为:8932,8943,8954,8965,8976,8987,8998,是“运算数”,的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中为整数,,即时,,其他情况不满足题意,【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.8、【分析】直接利用平方根以及立方根和估算无理数的大小得出abc的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c的整数部分,c=4,a+2b+c=5+4+4=13,a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出abc的值是解题关键.9、图见解析,﹣4<﹣π<|﹣|<2<【分析】根据确定原点,根据数轴上的点左边小于右边的排序依次表示即可.【详解】把实数||,,2表示在数轴上如图所示,<||<2<【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.10、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可.【详解】解:【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共21页。试卷主要包含了4的平方根是,化简计算﹣的结果是,在下列各数等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题,共17页。试卷主要包含了以下正方形的边长是无理数的是,下列说法不正确的是,实数﹣2的倒数是,下列判断中,你认为正确的是等内容,欢迎下载使用。

    2020-2021学年第十二章 实数综合与测试练习:

    这是一份2020-2021学年第十二章 实数综合与测试练习,共1页。试卷主要包含了有一个数值转换器,原理如下,若,则整数a的值不可能为,下列说法正确的是,已知a=,b=-|-|,c=,估计的值在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map