


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共1页。试卷主要包含了实数在哪两个连续整数之间,若与互为相反数,则a,估算的值是在之间,下列说法正确的是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )A.4 B.6 C.12 D.362、如果x>1,那么x﹣1,x,x2的大小关系是( )A.x﹣1<x<x2 B.x<x﹣1<x2 C.x2<x<x﹣1 D.x2<x﹣1<x3、的相反数是( )A.﹣ B. C. D.34、实数在哪两个连续整数之间( )A.3与4 B.4与5 C.5与6 D.12与135、若与互为相反数,则a、b的值为( )A. B. C. D.6、估算的值是在( )之间A.5和6 B.6和7 C.7和8 D.8和97、一个正方体的体积是5m3,则这个正方体的棱长是( )A.m B.m C.25m D.125m8、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个A.2 B.3 C.4 D.59、下列说法正确的是( )A.的相反数是 B.2是4的平方根C.是无理数 D.10、4的平方根是( )A.2 B.﹣2 C.±2 D.没有平方根第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的算术平方根是 _____;﹣64的立方根是 _____.2、计算: = ______.3、一列数按某规律排列如下,…若第n个数为,则n=_____.4、如果一个正数的平方根为2a-1和4-a,这个正数为_______.5、若a、b为实数,且满足|a-3|+=0,则a-b的值为_____三、解答题(10小题,每小题5分,共计50分)1、若与互为相反数,且x≠0,y≠0,求的值.2、已知一个正数x的平方根是a+3和2a-15,求a和x的值3、求下列各式中的值:(1); (2).4、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为.(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在4×4方格中阴影正方形的边长为a.①写出边长a的值.②请仿照(1)中的作图在数轴上表示实数﹣a+1.5、计算(1)(2)6、计算:.7、将下列各数填入相应的横线上:整数:{ …}有理数: { …}无理数: { …}负实数: { …}.8、计算:(1); (2).9、求下列各式中x的值.(1)(x-3)3=4(2)9(x+2)2=1610、计算: -参考答案-一、单选题1、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x,∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.2、A【分析】根据,即可得到,,由此即可得到答案.【详解】解:∵,∴,,∴,故选A.【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.3、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣,故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.4、B【分析】估算即可得到结果.【详解】解:,,故选:B.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.5、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.6、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.【详解】∵∴∴故选:C.【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.7、B【分析】根据正方体的体积公式:V=a3,把数据代入公式解答.【详解】解:××=5(立方米),答:这个正方体的棱长是米,故选:B.【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟记公式.8、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.【详解】有理数有:,,,,一共四个.无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.故选:C.【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.9、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A. 负数没有平方根,故无意义,A错误;B.,故2是4的平方根,B正确;C.是有理数,故C错误;D. ,故D错误; 故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.10、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:,故选:C.【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.二、填空题1、 ﹣4 【分析】根据立方根、算术平方根的概念求解.【详解】解:=5,5的算术平方根是,∴的算术平方根是;﹣64的立方根是﹣4.故答案为:,﹣4.【点睛】本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.2、##【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.3、50【分析】根据题目中的数据可以发现,分子变化是,…,分母变化是,…,从而可以求得第个数为时的值,本题得以解决.【详解】解:∴可写成∴分母为10开头到分母为1的数有10个,分别为∴第n个数为,则n=1+2+3+4+…+9+5=50,故答案为50.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.4、49【分析】根据平方根的定义得到与互为相反数,列出关于的方程,求出方程的解得到的值,即可确定出这个正数.【详解】根据题意得:,解得:,∴,,则这个正数为49故答案为:49.【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.5、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.【详解】解:∵|a-3|+=0,∴a-3=0,b-1=0,∴a=3,b=1,∴a-b=3-1=2.故答案为2.【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题1、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即,∴,∴.【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.2、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴,解得,所以.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.3、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.4、(1),1+;(2)①;②见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为.【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,,,由题意得:点表示的实数为:,故答案为:,;(2)①阴影部分正方形面积为:,求其算术平方根可得:,②如图所示:点表示的数即为.【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.5、(1);(2)【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)==;(2)==.【点睛】本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.6、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.7、;;,-3.030030003…,π;-3.030030003…,;【分析】有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.【详解】整数:{ }有理数:{ }无理数:{,-3.030 030 003…,π…};负实数:{-3.030 030 003…, …};【点睛】本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.8、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算.【详解】解:(1)原式=1+2-2 =1.(2)原式= = =2.【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..9、(1)x=5;(2)x=-或x=.【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1) (x−3)3=4,(x-3)3=8,x-3=2,∴x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,∴x=-或x=.【点睛】本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共1页。试卷主要包含了下列各数是无理数的是,下列等式正确的是.,下列计算正确的是.,下列各组数中相等的是,下列说法中错误的是,9的平方根是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了下列说法不正确的是,在实数中,无理数的个数是,三个实数,2,之间的大小关系,下列语句正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了有一个数值转换器,原理如下,下列说法正确的是,已知a=,b=-|-|,c=等内容,欢迎下载使用。