初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题,共1页。试卷主要包含了a为有理数,定义运算符号▽,下列说法正确的是,关于的叙述,错误的是,计算2﹣1+30=,9的平方根是,估计的值应该在.等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个2、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A.2 B.4 C.8 D.63、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.44、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )A. B.7 C. D.15、下列说法正确的是( )A.5是25的算术平方根 B.的平方根是±6C.(﹣6)2的算术平方根是±6 D.25的立方根是±56、关于的叙述,错误的是( )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点7、计算2﹣1+30=( )A. B.﹣1 C.1 D.8、9的平方根是( )A.±9 B.9 C.±3 D.39、估计的值应该在( ).A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间10、9的平方根是( )A.±3 B.-3 C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:______3(填“>”、“<”或“=”).2、若a、b为实数,且满足|a-3|+=0,则a-b的值为_____3、计算:______.4、比较大小:2______,的相反数是______.5、若实数a,b互为相反数,c,d互为倒数,e是的整数部分,f是的小数部分,则代数式的值是 ___.三、解答题(10小题,每小题5分,共计50分)1、求下列各式中的x:(1);(2).2、计算:3、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.(1)a= ,b= ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?4、求方程中x 的值(x﹣1)2 ﹣16 = 05、计算:.6、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.7、计算 8、运算,满足(1)求的值;(2)求的值.9、求下列各式中的x:(1);(2).10、计算 -参考答案-一、单选题1、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.2、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B.【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.3、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.4、A【分析】定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.【详解】解:且当时,▽a=a,▽(-3)=-3,4+▽(2-5)=4-3=1>-2,当a>-2时,▽a=-a,▽[4+▽(2-5)]=▽1=-1,故选:A.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.5、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是±,错误,不符合题意;C、(﹣6)2的算术平方根是6,错误,不符合题意;D、25的平方根是±5,错误,不符合题意;故选:A.【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.6、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A、是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.7、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可.【详解】解:原式=+1=.故选:D.【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.8、C【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故选:C.【点睛】此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a,即,那么这个数叫做a的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.9、C【分析】根据25<29<36估算出的大小,然后可求得的范围.【详解】解:∵25<29<36,∴<<,即5<<6.10、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.二、填空题1、<【分析】由得,再利用不等式的基本性质可得,从而可得答案.【详解】解:∵,∴,∴.故答案为:<.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.2、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.【详解】解:∵|a-3|+=0,∴a-3=0,b-1=0,∴a=3,b=1,∴a-b=3-1=2.故答案为2.【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.3、2【分析】直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.【详解】解:原式.故答案为:2.【点睛】本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.4、 ##【分析】(1)将2化为即可判断;(2)在的前面添“”号,即可得到其相反数.【详解】(1)∵∴∴,故答案为:(2);故答案为:【点睛】本题是实数的比较大小与求解相反数的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.在任意一个数前面添上“”号,新的数就表示原数的相反数.5、4-【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.【详解】解:∵实数a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵3<<4,∴的整数部分为3,e=3,∵2<<3,∴的小数部分为-2,即f=-2,∴=0+1-3+-2=故答案为:4-.【点睛】本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.三、解答题1、(1)或(2)【分析】(1)根据平方根定义开方,求出两个方程的解即可;(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.(1)开平方得, ∴ 解得,或(2)移项得,方程两边同除以8,得,开立方,得,【点睛】本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.2、【分析】根据立方根,算术平方根,绝对值的计算法则求解即可.【详解】解:.【点睛】本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.3、(1)﹣3,9;(2)≥9,12;(3)秒或秒.【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.4、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)【详解】解:(x﹣1)2 ﹣16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.5、.【分析】先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.6、(1),;(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,∴2x﹣2+6﹣3x=0,∴x=4,∴2x﹣2=6,∴a=36,∵a﹣4b的算术平方根是4,∴a﹣4b=16,∴36-4b=16∴b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,∴b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.7、【分析】直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.【详解】解:==【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.8、(1)-10(2)-22【解析】(1)解:(2)解:【点睛】本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.9、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:,两边开平方得:;(2)两边开立方得:,等式两边同时减去1得:.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.10、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可.【详解】解:.【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共1页。试卷主要包含了在下列四个实数中,最大的数是,三个实数,2,之间的大小关系,若 ,则,16的平方根是,a为有理数,定义运算符号▽,下列各式中,化简结果正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共1页。试卷主要包含了下列等式正确的是,下列运算正确的是,在以下实数,下列整数中,与-1最接近的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共1页。试卷主要包含了下列说法不正确的是,下列判断中,你认为正确的是,在下列四个实数中,最大的数是,三个实数,2,之间的大小关系,估计的值在,下列语句正确的是等内容,欢迎下载使用。

