


北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习
展开京改版七年级数学下册第七章观察、猜想与证明定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).
A. B.
C. D.
2、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
3、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
4、若一个角比它的余角大30°,则这个角等于( )
A.30° B.60° C.105° D.120°
5、如图:O为直线AB上的一点,OC为一条射线,OD平分,OE平分,图中互余的角共有( )
A.1对 B.2对 C.4对 D.6对
6、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
7、以下命题是假命题的是( )
A.的算术平方根是2
B.有两边相等的三角形是等腰三角形
C.三角形三个内角的和等于180°
D.过直线外一点有且只有一条直线与已知直线平行
8、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
9、如图,下列条件中,不能判断∥的是( )
A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
10、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一个角等于70°38′,则这个角的余角等于______.
2、已知∠A=38°24',则∠A的补角的大小是____.
3、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度.
4、已知∠A的补角是142°,则∠A的余角的度数是___________.
5、已知∠α=39°18',则∠α的补角的度数是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
2、如图,在下列解答中,填写适当的理由或数学式:
(1)∵∠A=∠CEF,( 已知 )
∴________∥________; (________)
(2)∵∠B+∠BDE=180°,( 已知 )
∴________∥________;(________)
(3)∵DE∥BC,( 已知 )
∴∠AED=∠________; (________)
(4)∵AB∥EF,( 已知 )
∴∠ADE=∠________.(________)
3、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
(1)延长线段AB到点D,使BD=AB;
(2)过点C画CE⊥AB,垂足为E;
(3)点C到直线AB的距离是 个单位长度;
(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 .
4、填写推理理由: 如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB .
∴∠3=∠ACB .
5、3.已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
(1)如图1,求∠DOE的度数;
(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
---------参考答案-----------
一、单选题
1、C
【分析】
根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.
【详解】
解:A、+=180°−90°=90°,互余;
B、+=60°+30°+45°=135°;
C、根据同角的余角相等,可得=;
D、+=180°,互补;
故选:C.
【点睛】
本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.
2、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
3、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
4、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
5、C
【分析】
根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵OD平分,OE平分,
∴,
又∵,即,
∴,,,,
∴互余的角共有4对.
故选:C.
【点睛】
此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.
6、A
【分析】
根据题意分析判断即可;
【详解】
由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;
第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;
第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;
第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;
综上所述,符合条件的是A.
故选:A.
【点睛】
本题主要考查了平行的判定与性质,准确分析判断是解题的关键.
7、A
【分析】
分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.
【详解】
解:A、的算术平方根应该是, A是假命题,
B、有两边相等的三角形是等腰三角形,B是真命题,
C、三角形三个内角的和等于180°,C是真命题,
D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,
故选:A.
【点睛】
本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.
8、D
【分析】
由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
【详解】
解:∵拐弯前、后的两条路平行,
∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
9、D
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
【详解】
解:、,内错角相等,
,故本选项错误,不符合题意;
、,同位角相等,
,故本选项错误,不符合题意;
、,同旁内角互补,
,故本选项错误,不符合题意;
、,它们不是内错角或同位角,
与的关系无法判定,故本选项正确,符合题意.
故选:D.
【点睛】
本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
10、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
二、填空题
1、19°22′
【分析】
根据余角的定义解决此题.
【详解】
解:∵90°-70°38'=19°22′.
∴根据余角的定义,这个角的余角等于19°22′.
故答案为:19°22′.
【点睛】
本题主要考查了余角的定义,熟练掌握余角的定义是解决本题的关键.
2、141°36′
【分析】
根据补角的定义即可求解.
【详解】
解:∠A的补角 =180°- 38°24'= 141°36′ .
故答案为:141°36′
【点睛】
本题考查了补角的定义,熟知补角的定义“如果两个角的和是180°,则这两个角互为补角”是解题关键.
3、60
【分析】
根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.
【详解】
解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,
∴∠AOE=∠COE,∠COE=∠BOC,
∴∠AOE=∠COE=∠BOC,
∵∠AOE+∠COE+∠BOC=180°,
∴∠BOC=60°,
∴∠AOD=∠BOC=60°,
故答案为:60.
【点睛】
本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.
4、52°度
【分析】
两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.
【详解】
解:∵∠A的补角为142°,
∴∠A=180°-142°=38°,
∴∠A的余角为90°-∠A=90°-38°=52°.
故答案为:52°.
【点睛】
本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.
5、
【分析】
根据补角的概念求解即可.补角:如果两个角相加等于180°,那么这两个角互为补角.
【详解】
解:∵∠α=39°18',
∴∠α的补角=.
故答案为:.
【点睛】
此题考查了补角的概念和角度的计算,解题的关键是熟练掌握补角的概念.补角:如果两个角相加等于180°,那么这两个角互为补角.
三、解答题
1、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【解析】
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
2、(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等
【解析】
【分析】
(1)根据平行线的判定定理:同位角相等,两直线平行,即可得;
(2)根据平行线的判定定理:同旁内角互补,两直线平行,即可得;
(3)根据平行线的性质:两直线平行,同位角相等,即可得;
(4)根据平行线的性质:两直线平行,内错角相等,即可得.
【详解】
解:(1)∵,(已知)
∴,(同位角相等,两直线平行);
(2)∵,(已知)
∴,(同旁内角互补,两直线平行);
(3)∵,(已知)
∴,(两直线平行,同位角相等)
(4)∵,(已知)
∴(两直线平行,内错角相等).
故答案为:(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等.
【点睛】
题目主要考查平行线的判定定理和性质,熟练掌握理解平行线的性质定理并结合图形是解题关键.
3、(1)见解析;(2)见解析;(3)2;(4),平行
【解析】
【分析】
(1)根据网格的特点和题意,延长到,使;
(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
(3)点C到直线AB的距离即的长,网格的特点即可数出的长;
(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
【详解】
解:(1)(2)如图所示,
(3)由网格可知
即点C到直线AB的距离是个单位长度
故答案为:2
(4)通过测量,可知
故答案为:,平行
【点睛】
本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
4、两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.
【解析】
【分析】
根据两直线平行,同位角相等可以求出∠DCB=∠2,等量代换得出∠DCB=∠1,再根据内错角相等,两直线平行得出GD∥CB,最后根据两直线平行,同位角相等,所以∠3=∠ACB.
【详解】
证明:∵CD∥EF,
∴∠DCB=∠2(两直线平行,同位角相等),
∵∠1=∠2,
∴∠DCB=∠1(等量代换).
∴GD∥CB(内错角相等,两直线平行).
∴∠3=∠ACB(两直线平行,同位角相等).
故答案为:两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.
5、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【解析】
【分析】
(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
【详解】
解:(1)∵EO⊥AB,
∴∠BOE=90°,
∴∠COE+∠BOD=90°,
∵∠EOC:∠BOD=7:11,
∴∠COE=35°,∠BOD=55°,
∴∠DOE=∠BOD+∠BOE=145°;
(2)∵MN⊥CD,
∴∠COM=90°,
∴∠EOM=∠COE+∠COM=125°,
∵∠BOD=55°,
∴∠BOC=180°-∠BOD=125°,
∴∠AOD=∠BOC=125°,
∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【点睛】
本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题: 这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共17页。试卷主要包含了下列命题是真命题的是,如图,直线AB∥CD,直线AB,如图,能判定AB∥CD的条件是,下列说法中,真命题的个数为,一个角的补角比这个角的余角大.等内容,欢迎下载使用。
北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题: 这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列命题中,为真命题的是,下列命题中,是真命题的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共24页。试卷主要包含了下列命题中,真命题是,命题等内容,欢迎下载使用。