


【真题汇编】2022年中考数学模拟真题 (B)卷(含答案及解析)
展开
这是一份【真题汇编】2022年中考数学模拟真题 (B)卷(含答案及解析),共26页。试卷主要包含了点P等内容,欢迎下载使用。
2022年中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为直线上的一点,平分,,,则的度数为( )A.20° B.18° C.60° D.80°2、二次函数y=(x+2)2+5的对称轴是( )A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣23、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.94、一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有人,可列得方程( )A. B.C. D.5、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A.1个 B.2个 C.3个 D.4个6、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A.增加10% B.增加4% C.减少4% D.大小不变7、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则A.1 B.2 C.4 D.88、点P(4,﹣3)关于原点对称的点的坐标是( )A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(4,3)9、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A.5或6 B.6或7 C.5或6或7 D.6或7或810、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.2、如图,,若,平分,则的度数是_____.3、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________4、如图,AB,CD是的直径,弦,所对的圆心角为40°,则的度数为______.5、方程x(2x﹣1)=2x﹣1的解是 ___;三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数与反比例函数(k≠0)交于点A、B两点,且点A的坐标为(1,3),一次函数与轴交于点C,连接OA、OB.(1)求一次函数和反比例函数的表达式;(2)求点B的坐标及的面积;(3)过点A作轴的垂线,垂足为点D.点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM.当与Rt△CNM相似时求M点的坐标.2、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.3、如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.4、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是 ;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.5、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米. -参考答案-一、单选题1、A【分析】根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.【详解】解:∵OC平分,∴,∴,∵,∴,∴,故选:A.【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.2、D【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.故选:D.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.3、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、B【分析】设这队同学共有人,根据“如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,”即可求解.【详解】解:设这队同学共有人,根据题意得: .故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.5、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.【详解】解:解不等式组得:,∵不等式组有且仅有3个整数解,∴,解得:,解方程得:,∵方程的解为负整数,∴,∴,∴a的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a为:-13,-11,-9,共3个,故选C.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.6、B【分析】设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.【详解】设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.故选:B【点睛】本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.7、B【分析】利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.【详解】解:设,∵点F为AB的中点,∴.∵,∴,即,解得:.故选B.【点睛】本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.8、B【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案.【详解】解:点P(4,-3)关于原点对称的点的坐标是(-4,3),故选:B.【点睛】此题主要考查了关于原点对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.9、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.10、B【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.二、填空题1、11或12【分析】根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.【详解】解:假设共有学生x人,根据题意得出:,解得:10<x≤12.因为x是正整数,所以符合条件的x的值是11或12,故答案为:11或12.【点睛】此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.2、【分析】先求解 利用角平分线再求解 由可得答案.【详解】解: ,, 平分, 故答案为:【点睛】本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.3、24【分析】分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论.4、70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE,根据平行线的性质即可得到∠AOC的度数.【详解】解:连接OE,如图,∵弧CE所对的圆心角度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°-40°)÷2=70°,∵CE//AB,∴∠AOC=∠OCE=70°,故答案为:70°.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出∠COE=40°是解题的关键.5、x1=,x2=1【分析】移项后提公因式,然后解答.【详解】解:移项,得x(2x-1)-(2x-1)=0,提公因式,得,(2x-1)(x-1)=0,解得2x-1=0,x-1=0,x1=,x2=1.故答案为:x1=,x2=1.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.三、解答题1、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或【分析】(1)把分别代入一次函数与反比例函数,解出,即可得出答案;(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入一次函数解出点C坐标,由即可;(3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可.【详解】(1)把代入一次函数得:,解得:,∴一次函数表达式为,把代入反比例函数得:,即,∴反比例函数表达式为;(2),解得:或,∴,令代入得:,∴,∴;(3)①当时,,,,,,∴,即,解得:,,∵M在第一象限,∴,,∴,②当时,,∴,即,解得:,,∵M在第一象限,∴,,∴,综上,当与相似时,M点的坐标为或.【点睛】本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键.2、AE=8,BE=10.【分析】由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.【详解】解:∵△ADE∽△ABC,∴,∵DE=8,BC=24,CD=18,AD=6,∴AC=AD+CD=24,∴AE=8,AB=18,∴BE=AB-AE=10.【点睛】本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.3、(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍; (3)或【分析】(1)如图,过作于 先证明 可得 再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解即可;(2)先求解 过作轴交于 再求解直线为: 设 则 再利用 再解方程即可;(3)分两种情况讨论:如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则再求解的解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分时,射线与抛物线的交点满足 按同样的方法可得答案.【详解】解:(1)如图,过作于 则 而 而 二次函数y=x2+bx﹣2的图象经过C点,解得: 二次函数的解析式为: (2) 过作轴交于 设直线为 解得: 所以直线为: 设 则 整理得:解得: 当时, 当时, 或 所以当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则 平分 则 同理可得直线的解析式为: 解得:或(不合题意,舍去)如图,同理可得:当平分时,射线与抛物线的交点满足 同理: 直线为: 解得:或(不合题意舍去)【点睛】本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.4、(1)(2)【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.【小题1】解:(1)∵有A.B、C三个闸口,∴张红选择A安全检查口通过的概率是,故答案为:;【小题2】根据题意画图如下:共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是.【点睛】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.5、(1)见解析(2)(3)【分析】(1)根据题意画出图形;(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.【小题1】解:图①中GH即为所求;【小题2】∵CD∥PB,∴△ECD∽△EPB,∴,即,解得:PB=9,∵FG∥PB,∴△HFG∽△HPB,∴,即,解得:FG=,答:榕树FG的高度为米;【小题3】∵CD∥EF,∴△BCD∽△BEF,∴,即,解得:BD=75,∵CD∥EF,∴△ACD∽△AMF,∴,即,解得:MF=,∴EM=EF-MF=70-=(米),故答案为:.【点睛】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.
相关试卷
这是一份【真题汇编】中考数学模拟真题 (B)卷(含详解),共19页。试卷主要包含了正八边形每个内角度数为,在数2,-2,,中,最小的数为,如果与的差是单项式,那么,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份【真题汇编】2022年最新中考数学模拟真题练习 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年中考数学模拟真题 (B)卷(含答案详解),共23页。试卷主要包含了若,,且a,b同号,则的值为,如图,在中,,,,分别在,下列说法中,正确的有等内容,欢迎下载使用。
