
初中数学沪科版七年级上册3.5 三元一次方程组及其解法教学设计
展开
这是一份初中数学沪科版七年级上册3.5 三元一次方程组及其解法教学设计,共2页。教案主要包含了研究探讨,例题讲解,练习等内容,欢迎下载使用。
3.5 三元一次方程组及其解法(一课时) 教学目标 1.理解三元一次方程组的含义. 2.会解某个方程只有两元的简单的三元一次方程组. 3.掌握解三元一次方程组过程中化三元为二元或一元的思路. 教学重点 1.使学生会解简单的三元一次方程组. 2.通过本节学习,进一步体会“消元”的基本思想. 教学难点 针对方程组的特点,灵活使用代入法、加减法等重要方法. 导入新课 前面我们学习了二元一次方程组的解法.有些问题,可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中含有更多的未知数.大家看下面的问题. 推进新课 一、研究探讨 出示引入问题 小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张. 1.题目中有几个未知数,你如何去设? 2.根据题意你能找到等量关系吗? 3.根据等量关系你能列出方程组吗? 请大家分组讨论上述问题. 1.设1元,2元,5元各x张,y张,z张.(共三个未知数) 2.三种纸币共12张;三种纸币共22元;1元纸币的数量是2元纸币的4倍. 3.上述三种条件都要满足,因此可得方程组 师:这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组. 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢? (学生小组交流,探索如何消元.) 可以把③分别代入①②,便消去了x,只包含y和z二元了: 解此二元一次方程组得出y、z,进而代回原方程组可求x. 教师对学生的想法给予肯定并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程. 即三元一次方程组 二元一次方程组 一元一次方程二、例题讲解 例1:解三元一次方程组 (让学生独立分析、解题,方法不唯一,可分别让学生板演后比较.) 解:②×3+③,得11x+10z=35. ①与④组成方程组 把x=5,z=-2代入②,得y=. 因此,三元一次方程组的解为 归纳:此方程组的特点是①不含y,而②③中y的系数为整数倍关系,因此用加减法从②③中消去y后,再与①组成关于x和z的二元一次方程组的解法最合理.反之用代入法运算较烦琐. 三、练习。课本116页练习(2)小题。 四。作业:教科书第116页练习 第1题第(1)小题.习题3.5第1题的(2)小题.
相关教案
这是一份沪科版第3章 一次方程与方程组3.5 三元一次方程组及其解法教学设计,共5页。教案主要包含了教材内容,教学目标,教学重难点,教学准备,教学方法,教学过程,教后思考等内容,欢迎下载使用。
这是一份初中数学沪科版七年级上册第3章 一次方程与方程组3.5 三元一次方程组及其解法教学设计,共3页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
这是一份初中数学3.5 三元一次方程组及其解法教案及反思,共7页。教案主要包含了教学重点与难点,教学目标,教学方法,教学过程,评价与反思等内容,欢迎下载使用。
