


数学必修41周期现象与周期函数课时训练
展开
这是一份数学必修41周期现象与周期函数课时训练,共6页。
2020-2021学年北师大版必修四 周期现象 作业一、选择题1、给出下列四个命题:①是第二象限角;②是第三象限角;③是第四象限角;④是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个2、一个扇形的弧长与面积都等于6,这个扇形中心角的弧度数是( )A.1 B.2 C.3 D.43、与角终边相同的角是( )A. B. C. D.4、中心角为60°的扇形,它的弧长为2π,则它的面积为A.6π B.2πC.12π D.3π5、将化为弧度为( ).A. B. C. D. 6、若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是( )A.4cm2 B.2cm2 C.4πcm2 D.2πcm27、《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积弦矢矢2),弧田如图由圆弧和其所对弦围城,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角,半径为6米的弧田,按照上述经验公式计算所得弧田面积约是A. 16平方米 B. 18平方米 C. 20平方米 D. 25平方米8、已知α是第一象限角,那么是( )A. 第一象限角 B. 第二象限角C. 第一或第二象限角 D. 第一或第三象限角9、下列与的终边相同的角的表达式中,正确的是 ( )A. B. C. D.10、将分针拨慢5分钟,则分钟转过的弧度数是 ( )A. B.- C. D.-11、将化为弧度为( ).A. B. C. D.12、 化为弧度是( )A. B. C. D.二、填空题13、终边在直线y=﹣x上角的集合可以表示为________.14、半径为2的圆中,的圆心角所对的弧的长度为 15、已知扇形的周长为8cm,圆心角为2,则扇形的面积为 16、如图,矩形接于半径为R的半圆,当此矩形的周长最大时边长分别为 三、解答题17、(本小题满分10分)用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断2 012°是不是这个集合的元素.18、(本小题满分12分)写出与终边相同的角的集合,并把中在~之间的角写出来.19、(本小题满分12分)已知集合A={求与A∩B中角终边相同角的集合S.
参考答案1、答案C解析利用象限角的定义逐一判断每一个选项的正误.详解-是第三象限角,故①错误.=π+,从而是第三象限角,所以②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.故答案为:C点睛本题主要考查象限角的定义,意在考查学生对该知识的掌握水平和分析推理能力.2、答案C解析设扇形的半径为r,中心角为α,根据扇形面积公式得,,∴r=2,又扇形弧长公式,∴.故选C.考点:扇形面积公式;弧长公式.3、答案D解析由所有与角终边相同的角,连同角在内,可构成一个集合可得。详解任一与终边相同的角,都可以表示成角与整数个周角的和,可得与角终边相同的角是,当时,,故选D。点睛本题考查任意角,是基础题。4、答案A解析首先60°=,设扇形的半径分别为R,由,解得R=6.∴扇形的面积为.故选:A.5、答案B解析根据角度与弧度的互化公式:,代入计算即可.详解,故选.点睛本题主要考查了角度与弧度的互化公式:①,②,③,属于对基础知识的考查.6、答案A解析解:∵弧度是2的圆心角所对的弧长为4,根据弧长公式,可得圆的半径为2,∴扇形的面积为:×4×2=4cm2,故选:A.7、答案C解析分析根据圆心角和半径分别计算出弦和矢,在根据题中所给的公式弧田面积=12×(=12×(弦××矢++矢2)即可计算出弧田的面积.详解如图,由题意可得:,,在中,可得, ,,可得:矢 ,由,可得弦 ,所以弧田面积弦矢矢2) 平方米,故选C.点睛该题属于新定义运算范畴的问题,在解题的时候一定要认真读题,将题中要交代的公式一定要明白对应的量是谁,从而结合图中的中,根据题意所得的,即可求得的值,根据题意可求矢和弦的值,即可利用公式计算求值得解. 8、答案D解析∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.考点:象限角、轴线角.9、答案A解析与的终边相同的角为 ,因此正确的是A. B,C中表达不统一, 不仅表示与的终边相同的角,而且表示与的终边相同的角,故选A.10、答案C解析分针拨慢5分钟,转过的角度为周角的,角为负角,因此弧度数为考点:正角与负角11、答案B解析根据角度与弧度的互化公式:,代入计算即可.详解,故选.点睛本题主要考查了角度与弧度的互化公式:①,②,③,属于对基础知识的考查.12、答案B解析.故选B.13、答案{α|α=﹣ +kπ,k∈Z}解析终边在直线y=﹣x上角的集合为 {α|α=﹣ +kπ,k∈Z}14、答案解析15、答案4解析由题意可得考点:扇形面积16、答案解析17、答案∵150°=.∴终边在阴影区域内角的集合为S={β|+2kπ≤β≤+2kπ,k∈Z}.∵2 012°=212°+5×360°=rad,又<<.∴2 012°=∈S.解析18、答案解:,设,∴,即,∴中在~之间的角是:,,,,即,,,.解析根据终边相同角,可求得符合条件的角。19、答案.解析
相关试卷
这是一份高中数学北师大版必修41.2向量的概念同步训练题,共8页。
这是一份北师大版必修44.2单位圆与周期性练习题,共8页。
这是一份高中数学北师大版必修43弧度制练习,共8页。