


2022年中考专题复习类型一 二次函数公共点问题(解析版)
展开
这是一份2022年中考专题复习类型一 二次函数公共点问题(解析版),共12页。
(1)用含的式子表示;
(2)求点的坐标;
(3)若直线与抛物线的另一个交点的横坐标为,求在时的取值范围(用含的式子表示).
【答案】(1);(2)或;(3)当时,有<<
【解析】
【分析】
(1)把代入:,即可得到答案;
(2)先求解抛物线的对称轴,记对称轴与的交点为,确定顶点的位置,分情况利用,求解,从而可得答案;
(3)分情况讨论,先求解的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系数的关系求解 结合二次函数的性质可得答案.
【详解】
解:(1)把代入:,
(2)
抛物线为:
抛物线的对称轴为:
顶点不在第一象限,
顶点在第四象限,
如图,设< 记对称轴与的交点为,
则
,
当>同理可得:
综上:或
(3)
当,设为:
解得:
为
消去得:
由根与系数的关系得:
解得:
当时,
当时,
当时,,
当时,有<<
当,
同理可得为:
同理消去得:
解得:
此时,顶点在第一象限,舍去,
综上:当时,有<<
【点睛】
本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题的关键.
【典例2】如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0),与y轴交于点C,顶点为D.
(1)求解抛物线解析式;
(2)连接AD,CD,BC,将△OBC沿着x轴以每秒1个单位长度的速度向左平移,得到,点O、B、C的对应点分别为点,,,设平移时间为t秒,当点O'与点A重合时停止移动.记与四边形AOCD的重叠部分的面积为S,请直接写出S与时间t的函数解析式;
(3)如图2,过抛物线上任意一点M(m,n)向直线l:作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME-MF=?若存在,请求F点的坐标;若不存在,请说明理由.
【答案】(1)y=-x2-2x+3;(2);(3)存在,.
【解析】
【分析】
(1)运用待定系数法解答即可;
(2)分0
相关试卷
这是一份题型九 二次函数综合题 类型一 二次函数公共点问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型一二次函数公共点问题专题训练解析版docx、题型九二次函数综合题类型一二次函数公共点问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份2022年中考数学专题复习类型十二 二次函数与圆的问题(解析版),共14页。
这是一份2022年中考数学专题复习类型四 二次函数与角度有关的问题(解析版),共19页。