初中北师大版第六章 反比例函数3 反比例函数的应用课后作业题
展开6.3 《反比例函数的应用》习题3
一、选择题
1.如一次函数与反比例函数 的图像如图所示,则二次函数的大致图象是 ( )
A. B. C. D.
2.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
A. B. C. D.
3.在平面直角坐标系中,我们把横纵坐标都是整数的点叫做整点,已知二次函数和反比例函数的图象如图所示,它们围成的封闭图形(不包括边界)的整点个数为,则的取值范围是( )
A. B. C. D.
4.函数与(a≠0)在同一平面直角坐标系中的图象可能是 ( ).
A. B.
C. D.
5.反比例函数与二次函数在同一直角坐标系的图像可能是( )
A. B. C. D.
6.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数的图象可能是
A. B. C. D.
7.如图图形中,阴影部分面积相等的是( )
A.甲 乙
B.甲 丙
C.乙 丙
D.丙 丁
8.已知在同一直角坐标系中二次函数和反比例函数的图象如图所示,则一次函数的图象可能是( )
A. B. C. D.
9.方程的根可视为函数的图象与函数的图象交点的横坐标,则方程的实根所在的范围是( )
A. B. C. D.
10.反比例函数中,当x<0时,y随x的增大而增大,则二次函数的图象大致是下图中的( )
A. B.
C. D.
11.二次函数的图像如图所示,则一次函数和反比例函数在同一平面直角坐标系中的图像可能是( )
A.B. C. D.
12.如图是二次函数,反比例函数在同一直角坐标系的图象,若y1与y2交于点A(4,yA),则下列命题中,假命题是( )
A.当x>4时, B.当时,
C.当时,0<x<4 D.当时,x<0
13.反比例函数的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致是( )
A.B.C. D.
二、解答题
1.小阳要把一篇文章录入电脑,所需时间y(分)与录入文字的速度x(字/分)之间的反比例函数关系如图.
(1)这篇文章共有多少个字?
(2)写出y与x的函数表达式;
(3)若小阳7点20分开始录入,预计完成时间不超过7点28分,请你用函数的性质说明小阳录入文字的速度至少为多少?
2.五一黄金周,小张一家自驾去某景点旅行.已知汽车油箱的容积为50L,小张爸爸把油箱加满油后到了离加油站200km的某景点,第二天沿原路返回.
(1)油箱加满油后,求汽车行驶的总路程s(单位:km)与平均耗油量b(单位L/km)的函数关系式;
(2)小张爸爸以平均每千米耗油0.1L的速度驾驶到达目的地,返程时由于下雨,降低了车速,此时平均每千米的耗油量增加了一倍.如果小张爸爸始终以此速度行驶,不需要加油能否返回原加油站?如果不能,至少还需加多少油?
3.为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时与药物燃烧后,y关于x的函数关系式.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过几分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
5.为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
6.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量(毫克/百毫升)与时间(时)成正比例;1.5小时后(包括1.5小时)与成反比例.根据图中提供的信息,解答下列问题:
(1)求一般成人喝半斤低度白酒后,与之间的两个函数关系式及相应的自变量 取值范围;
(2)依据人的生理数据显示,当≥80时,肝部正被严重损伤,请问喝半斤低度白酒后,肝部被严重损伤持续多少小时?
7.小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.
(1)小芳家与学校之间的距离是多少?
(2)写出与的函数表达式;
(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?
8.游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.
(1)求反比例函数的关系式及其自变量的取值范围;
(2)求整条滑道的水平距离;
(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.
答案
一、选择题
1.A.2.D.3.B.4.D.5.C.6.C.7.B.8.B.9.D.10.C.
11.D.12.D.13.B.
二、解答题
1.解:(1)由图象可知:每分钟录入140个字时,10分钟录完,
∴这篇文章共有140×10=1400(个)
答:这篇文章共有1400个字;
(2)设反比例函数表达式为y=,
将x=140,y=10代入,得
10=
解得k=1400
∴y与x的函数表达式y=;
(3)将y=8代入y=,得
解得:x=175
∵1400>0
∴反比例函数图象在第一象限y随x的增大而减小
∴当y≤8时,x≥175
答:若小阳7点20分开始录入,预计完成时间不超过7点28分,小阳录入文字的速度至少为每分钟175个.
2.解:(1)∵耗油量×行驶里程=50升;
∴xy=50,
∴y=(x>0);
(2)去时耗油:200×0.1=20L,
返回时耗油:200×0.2=40L,
20L+40L=60L>50L,
答:不加油不能返回原加油站.至少还需加10L油.
3.(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1
∴k1=
设药物燃烧后y关于x的函数关系式为y=(k2>0)代入(8,6)为6=,
∴k2=48
∴药物燃烧时y关于x的函数关系式为(0≤x≤8),药物燃烧后y关于x的函数关系式为(x>8)
∴
(2)结合实际,令中y≤1.6得x≥30
即从消毒开始,至少需要30分钟后生才能进入教室.
(3)把y=3代入,得:x=4
把y=3代入,得:x=16
∵16﹣4=12
∴这次消毒是有效的.
故答案为(1);(2)至少需要30分钟;(3)消毒有效,理由如上.
4.分析:(1)应用待定系数法分段求函数解析式;
(2)观察图象可得;
(3)代入临界值y=10即可.
详解:(1)设线段AB解析式为y=k1x+b(k≠0)
∵线段AB过点(0,10),(2,14)
代入得
解得
∴AB解析式为:y=2x+10(0≤x<5)
∵B在线段AB上当x=5时,y=20
∴B坐标为(5,20)
∴线段BC的解析式为:y=20(5≤x<10)
设双曲线CD解析式为:y=(k2≠0)
∵C(10,20)
∴k2=200
∴双曲线CD解析式为:y=(10≤x≤24)
∴y关于x的函数解析式为:
(2)由(1)恒温系统设定恒温为20°C
(3)把y=10代入y=中,解得,x=20
∴20-10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
5.(1) 当0≤x≤8时,设y=kx,把(8,6)代入得
6=8k,
∴k=
∴y= x(0≤x≤8);
当x>8时,设y=,把(8,6)代入得
设6=,
∴m=48,
∴y= (x>8)
(2)当y=1.6时,
=1.6,
解之得
x=30,
结合图像知,至少需要经过30分钟后,员工才能回到办公室;
(3)把y=3代入y= x,得:x=4
把y=3代入y= ,得:x=16
∵16﹣4=12
所以这次消毒是有效的
6.(1)由题意,得
①当时,
设函数关系式为:,
则,解得,
故,
②当时,
设函数关系式为:,
则,解得 ,
故
综上所述:
(2)当时, 解得(或)
当时, 解得(或 )
由图象可知,肝部被严重损伤持续时间(或
)(小时)
7.(1)小芳家与学校之间的距离是:();
(2)设,当时,,
解得:,
故与的函数表达式为:;
(3)当时,,
,在第一象限内随的增大而减小,
小芳的骑车速度至少为.
8.解:(1)∵,点B到y轴的距离是5,
∴点B的坐标为.
设反比例函数的关系式为,
则,解得.
∴反比例函数的关系式为.
∵当时, ,即点A的坐标为,
∴自变量x的取值范围为;
(2)由题意可知,二次函数图象的顶点为,点C坐标为.
设二次函数的关系式为,则,解得.
∴二次函数的关系式为.
当时,解得(舍去),
∴点D的坐标为,则.
∴整条滑道的水平距离为:;
(3)p的取值范围为.
由题意可知,点N坐标为(,即,为抛物线的顶点.
设水流所成抛物线的表达式为.
当水流落在点时,由,解得;
当水流落在点时,由,解得.
∴p的取值范围为.
北师大版九年级上册3 反比例函数的应用复习练习题: 这是一份北师大版九年级上册3 反比例函数的应用复习练习题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
【课时训练】北师大版数学九年级上册--6.3 反比例函数的应用(pdf版,含答案): 这是一份【课时训练】北师大版数学九年级上册--6.3 反比例函数的应用(pdf版,含答案),文件包含课时训练参考答案全册pdf、63反比例函数的应用pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
初中数学北师大版九年级上册3 反比例函数的应用当堂达标检测题: 这是一份初中数学北师大版九年级上册3 反比例函数的应用当堂达标检测题,共4页。试卷主要包含了反比例函数表达式的求法等内容,欢迎下载使用。

